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Why Relevance Ranking in Web Search?

Sort web pages by users’ information needs

The higher the rank, the more relevant the page.

Filter out irrelevant web pages for users

More than 968 million websites in 2014
[http://www.internetlivestats.com/]

The Goal of Relevance Ranking in Web Search

Estimate the relevance of each web page to a query,
and then return a ranked list of web pages with higher relevance.
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Conventional Approaches

Bag-of-Words Retrieval Model

Retrieval Functions

TF-IDF, Okapi-BM25, etc.

Adjust by User Feedback

e.g., Rocchio relevance feedback

Learning to Rank

Feature Extraction

e.g., contents and URLs

Supervised Ranking Model

RankNet, LambdaMART, etc.

Specialized Web Search

Personalized Search

Federated Web Search

Accurate Evaluation

Rank of rel. docs (e.g., NDCG)

User click-through data

However, all of previous work focus on optimizing queries separately.
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An example from a commercial search engine

There are search results of three basketball players in NBA.

Kobe Bryant Stats - ESPN.com - Go.com
espn.go.com/nba/player/_/id/110/kobe-bryant

Tim Duncan NBA Stats | Basketball-Reference.com
www.basketball-reference.com/players/d/davisgl01.html

Tim Duncan Stats, Video, Bio, Profile | NBA.com
www.nba.com/playerfile/tim_duncan/

Kobe Bryant Stats, Video, Bio, Profile | NBA.com
www.nba.com/playerfile/kobe_bryant/

Kobe Bryant NBA Stats | Basketball-Reference.com
www.basketball-reference.com/players/b/bryanko01.html

Tim Duncan - ESPN.com - Go.com
espn.go.com/nba/player/_/id/215/tim-duncan

Query “Tim Duncan”Query “Kobe Bryant”

Kobe Bryant - Biography.com
www.biography.com/people/kobe-bryant-10683945

Tim Duncan - Biography.com
www.biography.com/people/tim-duncan-40996

Kobe Bryant - IMDb
www.imdb.com/name/nm1101483/

Tim Duncan - IMDb
www.imdb.com/name/nm1989163/

Query “Kevin Durant”

Kevin Durant
kevindurant.com

Kevin Durant - Wikipedia, the free encyclopedia
en.wikipedia.org/wiki/Kevin_Durant

Kevin Durant Stats, Video, Bio, Profile | NBA.com
www.nba.com/playerfile/kevin_durant/

Kevin Durant - IMDb
www.imdb.com/name/nm2562621/

Kevin Durant - ESPN.com - Go.com
espn.go.com/nba/player/_/id/3202/kevin-durant

Tim Duncan NBA Stats | Basketball-Reference.com
www.basketball-reference.com/players/d/davisgl01.html

Kevin Durant - Biography.com
www.biography.com/people/tim-duncan-40996

Tim Duncan -- 21
slamduncan.com

Tim Duncan - Wikipedia, the free encyclopedia
en.wikipedia.org/wiki/Tim_Duncan

Kobe Bryant - Wikipedia, the free encyclopedia
en.wikipedia.org/wiki/Kobe_Bryant

Official Website of Kobe Bryant
kobebryant.com

more consistent

less consistent
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Rankings are much different!
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Topical Clusters in Websites

Web pages about a topic on a website can be treated a topical cluster

MLB baseball playersNBA basketball players

celebrities movies

Can these information be well exploited?
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While ranking web pages for three queries...

Jeremy Lin Kobe Bryant LeBron James
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While ranking web pages for three queries...

Jeremy Lin Kobe Bryant LeBron James

We are all basketball players in NBA!
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Ranking Consistency in Web Search

The relevance of web pages in the same topical clusters would be
consistent for similar search intents.

Ranking consistency may help the relevance ranking in web search.

The goal of this paper

Learn the ranking consistency, and then improve the relevance ranking
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Do users realize the ranking consistency?

Two user surveys via Amazon Mechanical Turk (MTurk)

a crowdsourcing platform for work that requires human intelligence

Five pairs of queries of five different types

Re-rank results to be consistent, and then ask whether are improved

First Survey

observe two results together

25 questions for 10 workers

Second Survey

observe two results separately

50 questions for 10 workers
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User Survey Results

Two Queries (The 1st Survey) Single Query (The 2nd Survey)
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More users select consistent rankings.
Equal.
More users select original rankings.

Figure: The results of two user surveys.

consistent � original in 1st survey
– consistency can be observed directly

consistent > original in 2nd survey
– even users cannot observe directly!

The ranking consistency is realizable and more preferable!
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Two Challenges in Ranking Consistency

Challenge 1

How to determine similar-intent queries and topical clusters?

How to consistently rank topical clusters?

NBA 
basketball 
players

similar-intent queries

topical clusters
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Two Challenges in Ranking Consistency (Cont’d)

Challenge 2

How to handle web pages not in any topical cluster?

e.g., official websites and personal web pages

Jeremy Lin
JLIN7: Lin’s official website

Moreover, the best ranking for each query might be a little different.
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Two-stage Re-ranking Model

Stage 1: Consistent Ranking Model

Apply a knowledge base to determine queries with similar intents

Establish topical clusters by URL patterns

Learn the relevance of topical clusters from click-through logs

Stage 2: Ensemble-based Re-ranking

Re-rank search results of an original ranker with results from Stage 1

Apply several features to decide the parameter in the ensemble
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Outline for Section 3
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Query Intents and Entity Types

Named entity recognition in queries (NERQ)

More than 70% queries cover entities [Guo et al., SIGIR’09].

Entity types in knowledge bases

Knowledge bases summarize entity types.
Queries with same types may share similar intents

“Jeremy Lin”

“Kobe Bryant”

“Sandra Bullock”

“A-Rod”

person

athlete

baseball player

basketball player

actor

Query

Knowledge Base

Entity

Search Engine

Entity Type
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Topical Clusters and URL Patterns

Some websites have specific contents.

e.g., ESPN.com contains web pages about different sports.

Pages in the same topical cluster usually share the same URL pattern.

espn.go.com/nba/player/ /id/*/* is for basketball players.
espn.go.com/mlb/player/ /id/*/* is for baseball players.

URL Pattern Extraction [Jiang et al., WWW’12]

Collect URL collection from search logs
Generalize URLs into regular expressions as URL patterns

Kobe Bryant Stats - ESPN.com - Go.com
espn.go.com/nba/player/_/id/110/kobe-bryant

Tim Duncan - ESPN.com - Go.com
espn.go.com/nba/player/_/id/215/tim-duncan

Kevin Durant - ESPN.com - Go.com
espn.go.com/nba/player/_/id/3202/kevin-durant

espn.go.com/nba/player/_/id/*/*
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Consistent Ranking Model (Stage 1)

Assumption 1

The relevance of a page is decided by the pattern relevance.

P (u | q) =

{
P (p | q) , if u is matched by pattern p

0 , otherwise

Assumption 2

The relevance distribution is an aggregation over query types.

P(p | q) =
∑

t∈T (q)

P (p | t, q) · P (t | q) =
∑

t∈T (q)

P (p | t) · P (t | q)

Question: How to compute P (p | t) and P (t | q)?
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Pattern-Type Relevance and Type Distribution

Pattern-Type Relevance P(p | t)
Extract pairwise preference (p1, p2) from user feedback in logs

Aggregate (p1, p2) into (p1, p2,w) by each entity to avoid popularity biases

Learn the relevance P(p | t) by rank aggregation

Type Distribution P(t | q)
Estimate how much users treat q is a query of the type t.

Adopt click-through data and Bayesian m-estimate smoothing

P (t | q) =

∑
p∈S P (t | p) · Click (p, q) + m · P (t)

m +
∑

t∈T (q)

∑
p∈S P (t | p) · Click (p, q)

See our paper for detailed information.

J.-Y. Jiang et al. (NTU & MSR) Improving Ranking Consistency for Web Search October 22, 2015 (CIKM) 15 / 27



Introduction Ranking Consistency Consistent Ranking Model Ensemble-based Re-ranking Experiments Conclusions

Outline for Section 4

1 Introduction
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Ensemble-based Re-ranking (Stage 2)

Ensemble of the consistent ranking model and the original ranker

For a query q and a URL u ranked in the position i by the original
ranker, the relevance can be computed as:

P (u | q, i) = λ · P (u | q)︸ ︷︷ ︸
Consistency Ranking

+ (1− λ) · P (u | i)︸ ︷︷ ︸
Original Ranker

,
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Multiple Parameters

In different cases, the best parameter might be also different.

e.g., λ should be lower for pages in personal sites.

Replace the parameter λ with a logistic function

Then some features can be the input and adjust the parameter!

λ (X ) =
1

1 + exp (−f (X ))
, f (X ) = β0 +

|X |∑
i=1

βi · xi

xi is the i-th feature in the feature set X
β0 is the bias parameter

|X | = 0 is a special case of single parameter.

Use the RankNet cost function to optimize β parameters.

See our paper for detailed optimization.
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Re-ranking Features

Various features in three levels are considered.

including query features, entity features and URL features

Helpful in recognizing different situations and adjusting the parameter

Query Features

query length

query frequency

Entity Features

number of types

type entropy

entity frequency

URL Features

pattern matching

original position

consistent relevance

N-gram similarity

host and URL

There are totally 10 features used in our approach.
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Outline for Section 5

1 Introduction

2 Ranking Consistency in Web Search

3 Consistent Ranking Model (Stage 1)

4 Ensemble-based Re-ranking (Stage 2)

5 Experiments
Experimental Settings
Evaluation of Ranking Consistency
Evaluation of Re-ranking Models
Feature Analysis

6 Conclusions and Future Work
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Dataset and Experimental Settings

Knowledge Base

Freebase dumped in January 2014

Remove very spare types with less than 5 entities

Finally 444 types in the type set

Search Engine Logs

Logs of a commercial search engine in November 2013

56,466,534 queries for 847,682 distinct entities after extraction

Queries of 21 days as training data, the remaining as testing data

Treat URLs with SAT-Clicks as the ground-truth
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Dataset and Experimental Settings (Cont’d)

Seven testing subsets with different conditions

Dataset Description

All All queries in testing data.
Head Queries with top 10% entity frequency.
Tail Queries with bottom 10% entity frequency.
New Queries which do not appear in training data.
Peo. Queries with type people/person.
Loc. Queries with type location/location.
Org. Queries with type organization/organization.

person, location and organization cover most entities
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Evaluation of Ranking Consistency

Propose a new metric based on Kendall’s tau

For a type t and a set of queries Q (t) with the type t

1(
|Q(t)|

2

) ∑
q1∈Q(t)

∑
q2∈Q(t)\q1

τ (r (q1, t) , r (q2, t))

r (q, t) denotes the ranking result of t’s URL patterns with query q.
τ (r1, r2) is the standard Kendall’s tau rank correlation coefficient.

Give zero rank scores to patterns without appearance in search results

Baseline

The original ranker in the search engine (Default).

J.-Y. Jiang et al. (NTU & MSR) Improving Ranking Consistency for Web Search October 22, 2015 (CIKM) 21 / 27



Introduction Ranking Consistency Consistent Ranking Model Ensemble-based Re-ranking Experiments Conclusions

Evaluation of Ranking Consistency (Cont’d)

Type Default Our Approach

Overall types 0.5671 0.5943 (+4.78%)
people/person 0.6410 0.6517 (+1.67%)
location/location 0.6327 0.6455 (+2.02%)
organization/organization 0.7533 0.7588 (+0.73%)
celebrities/celebrity 0.6306 0.6697 (+6.21%)
music/album 0.4589 0.4842 (+5.51%)
book/book 0.5367 0.5544 (+3.31%)

Our method significantly improved the ranking consistency.
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Evaluation of Ranking Consistency (Cont’d)

Type Default Our Approach

Overall types 0.5671 0.5943 (+4.78%)
people/person 0.6410 0.6517 (+1.67%)
location/location 0.6327 0.6455 (+2.02%)
organization/organization 0.7533 0.7588 (+0.73%)
celebrities/celebrity 0.6306 0.6697 (+6.21%)
music/album 0.4589 0.4842 (+5.51%)
book/book 0.5367 0.5544 (+3.31%)

people and location improve less than overall because they are too general.
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Evaluation of Ranking Consistency (Cont’d)

Type Default Our Approach

Overall types 0.5671 0.5943 (+4.78%)
people/person 0.6410 0.6517 (+1.67%)
location/location 0.6327 0.6455 (+2.02%)
organization/organization 0.7533 0.7588 (+0.73%)
celebrities/celebrity 0.6306 0.6697 (+6.21%)
music/album 0.4589 0.4842 (+5.51%)
book/book 0.5367 0.5544 (+3.31%)

celebrity improves the most because many sites are about celebrities.
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Evaluation of Ranking Consistency (Cont’d)

Type Default Our Approach

Overall types 0.5671 0.5943 (+4.78%)
people/person 0.6410 0.6517 (+1.67%)
location/location 0.6327 0.6455 (+2.02%)
organization/organization 0.7533 0.7588 (+0.73%)
celebrities/celebrity 0.6306 0.6697 (+6.21%)
music/album 0.4589 0.4842 (+5.51%)
book/book 0.5367 0.5544 (+3.31%)

organization improves the least because they usually have only official sites.
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Evaluation of Re-ranking Models

Baseline Method

the default ranker of that commercial search engine

a learning-to-rank model with myriad features

a strong competitor (as a product in the real-world search engine)

evaluate whether the re-ranking model is effective

Evaluation Measure

Mean Average Precision (MAP)

consider all relevant (clicked) documents

Mean Reciprocal Rank (MRR)

consider the first predicted relevant document
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Evaluation of Re-ranking Models (Cont’d)

Default
Our Approach Our Approach

(single params) (multiple params)

All
MAP 0.7272 0.7454 (+2.49%) 0.7571 (+4.12%)
MRR 0.7288 0.7469 (+2.49%) 0.7589 (+4.13%)

Head
MAP 0.7294 0.7491 (+2.70%) 0.7611 (+4.34%)
MRR 0.7309 0.7505 (+2.68%) 0.7627 (+4.35%)

Tail
MAP 0.7116 0.7228 (+1.57%) 0.7384 (+3.76%)
MRR 0.7138 0.7251 (+1.58%) 0.7408 (+3.78%)

New
MAP 0.7272 0.7453 (+2.49%) 0.7572 (+3.83%)
MRR 0.7287 0.7468 (+2.48%) 0.7589 (+3.83%)

Peo.
MAP 0.7468 0.7756 (+3.86%) 0.7834 (+4.89%)
MRR 0.7483 0.7772 (+3.86%) 0.7851 (+4.92%)

Loc.
MAP 0.7268 0.7465 (+2.72%) 0.7573 (+4.20%)
MRR 0.7283 0.7481 (+2.71%) 0.7588 (+4.19%)

Org.
MAP 0.8422 0.8615 (+2.28%) 0.8674 (+2.99%)
MRR 0.8432 0.8624 (+2.28%) 0.8684 (+3.00%)
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Evaluation of Re-ranking Models (Cont’d)

Default
Our Approach Our Approach

(single params) (multiple params)

All
MAP 0.7272 0.7454 (+2.49%) 0.7571 (+4.12%)
MRR 0.7288 0.7469 (+2.49%) 0.7589 (+4.13%)

Head
MAP 0.7294 0.7491 (+2.70%) 0.7611 (+4.34%)
MRR 0.7309 0.7505 (+2.68%) 0.7627 (+4.35%)

Tail
MAP 0.7116 0.7228 (+1.57%) 0.7384 (+3.76%)
MRR 0.7138 0.7251 (+1.58%) 0.7408 (+3.78%)

For the default ranking, head/tail queries are better/lower performance.
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Evaluation of Re-ranking Models (Cont’d)

Default
Our Approach Our Approach

(single params) (multiple params)

All
MAP 0.7272 0.7454 (+2.49%) 0.7571 (+4.12%)
MRR 0.7288 0.7469 (+2.49%) 0.7589 (+4.13%)

Peo.
MAP 0.7468 0.7756 (+3.86%) 0.7834 (+4.89%)
MRR 0.7483 0.7772 (+3.86%) 0.7851 (+4.92%)

Loc.
MAP 0.7268 0.7465 (+2.72%) 0.7573 (+4.20%)
MRR 0.7283 0.7481 (+2.71%) 0.7588 (+4.19%)

Org.
MAP 0.8422 0.8615 (+2.28%) 0.8674 (+2.99%)
MRR 0.8432 0.8624 (+2.28%) 0.8684 (+3.00%)

Peo. and Org. have better performance because they have own official sites.
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Evaluation of Re-ranking Models (Cont’d)

Default
Our Approach Our Approach

(single params) (multiple params)

All
MAP 0.7272 0.7454 (+2.49%) 0.7571 (+4.12%)
MRR 0.7288 0.7469 (+2.49%) 0.7589 (+4.13%)

Head
MAP 0.7294 0.7491 (+2.70%) 0.7611 (+4.34%)
MRR 0.7309 0.7505 (+2.68%) 0.7627 (+4.35%)

Tail
MAP 0.7116 0.7228 (+1.57%) 0.7384 (+3.76%)
MRR 0.7138 0.7251 (+1.58%) 0.7408 (+3.78%)

New
MAP 0.7272 0.7453 (+2.49%) 0.7572 (+3.83%)
MRR 0.7287 0.7468 (+2.48%) 0.7589 (+3.83%)

Peo.
MAP 0.7468 0.7756 (+3.86%) 0.7834 (+4.89%)
MRR 0.7483 0.7772 (+3.86%) 0.7851 (+4.92%)

Loc.
MAP 0.7268 0.7465 (+2.72%) 0.7573 (+4.20%)
MRR 0.7283 0.7481 (+2.71%) 0.7588 (+4.19%)

Org.
MAP 0.8422 0.8615 (+2.28%) 0.8674 (+2.99%)
MRR 0.8432 0.8624 (+2.28%) 0.8684 (+3.00%)

Using multiple parameters achieves better performance.
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Evaluation of Re-ranking Models (Cont’d)

Default
Our Approach Our Approach

(single params) (multiple params)

All
MAP 0.7272 0.7454 (+2.49%) 0.7571 (+4.12%)
MRR 0.7288 0.7469 (+2.49%) 0.7589 (+4.13%)

Head
MAP 0.7294 0.7491 (+2.70%) 0.7611 (+4.34%)
MRR 0.7309 0.7505 (+2.68%) 0.7627 (+4.35%)

Tail
MAP 0.7116 0.7228 (+1.57%) 0.7384 (+3.76%)
MRR 0.7138 0.7251 (+1.58%) 0.7408 (+3.78%)

Although head queries are still better, tail queries have great improvements.
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Evaluation of Re-ranking Models (Cont’d)

Default
Our Approach Our Approach

(single params) (multiple params)

All
MAP 0.7272 0.7454 (+2.49%) 0.7571 (+4.12%)
MRR 0.7288 0.7469 (+2.49%) 0.7589 (+4.13%)

Peo.
MAP 0.7468 0.7756 (+3.86%) 0.7834 (+4.89%)
MRR 0.7483 0.7772 (+3.86%) 0.7851 (+4.92%)

Loc.
MAP 0.7268 0.7465 (+2.72%) 0.7573 (+4.20%)
MRR 0.7283 0.7481 (+2.71%) 0.7588 (+4.19%)

Org.
MAP 0.8422 0.8615 (+2.28%) 0.8674 (+2.99%)
MRR 0.8432 0.8624 (+2.28%) 0.8684 (+3.00%)

Peo. and Loc. improve more because they have many pages in topical clusters.
Org. improves less because they have few pages in topical clusters.
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Feature Analysis
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Outline for Section 6

1 Introduction

2 Ranking Consistency in Web Search

3 Consistent Ranking Model (Stage 1)

4 Ensemble-based Re-ranking (Stage 2)

5 Experiments

6 Conclusions and Future Work
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Conclusions and Future Work

Propose the new idea called ranking consistency in web search

Two convincing user surveys on Amazon Mechanical Turk

Propose a two-stage re-ranking model by leveraging a knowledge base
and click-through data

Propose features in three levels to adjust the ensemble

Future Work
Supervised Approach

Optimize the ranking consistency and cost function at the same time

Unsupervised Approach

Consider the ranking consistency while calculating retrieval functions
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Q & A

Thank you for listening! Any question?

Contact Information

Jyun-Yu (John) Jiang

http://jyunyu.csie.org/

jyunyu.jiang@gmail.com
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Illustration of Surveys in MTurk
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Query Type Extraction

Any method of NERQ can be applied.

Here the click-through data and Wikipedia is simply exploited.

https://.../wiki/Kobe_Bryant

“Kobe Bryant”

Search Logs

Click-through Rate > 10%

Freebase

personathlete

basketball player

actor

Query Types
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Pattern-Type Relevance P(p | t)

Exploit click-through data from search engine logs

Extract pairwise preference from original rankings and user feedback

(p1, p2) denotes that the pattern p1 is more relevant than p2.

Hmm… ESPN seems more relevant than IMDb.
I should click EPSN and give IMDb up.

(EPSN, IMDb)

J.-Y. Jiang et al. (NTU & MSR) Improving Ranking Consistency for Web Search October 22, 2015 (CIKM) 27 / 27



Preference Extraction

A user searches “Kobe Bryant,” and then clicks some web pages.

1 Kobe Bryant - Wikipedia, the free encyclopedia
en.wikipedia.org/wiki/Kobe Bryant
p1 = en.wikipedia.org/wiki/*

2 (Clicked) KB24 - Official Website of Kobe Bryant
kobebryant.com, p2 = ∅

3 (Clicked) Kobe Bryant Stats, Video, Bio, Profile
www.nba.com/playerfile/kobe bryant/
p3 = www.nba.com/playerfile/*/

4 Kobe Bryant Biography
www.biography.com/people/kobe-bryant-10683945
p4 = www.biography.com/people/*

5 (Clicked) Kobe Bryant — Los Angeles Lakers
sports.yahoo.com/nba/players/3118
p5 = sports.yahoo.com/nba/players/*

Then we have: (p3, p1) , (p3, p4) , (p5, p1) , (p5, p4)
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More Details about Preference Extraction

Consider only the SAT-Clicks
satisfied clicks with ≥ 30 seconds dwell time [Wang et al., KDD’09]

Focus on web pages of the first page of search results

Drawback

Biased by popular queries or popular entities
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Preference Aggregation

aggregate preferences by entities to avoid the popularity bias

estimate the probability of observing the preference of two patterns

(p1, p2,w) denotes P(the pattern p1 is more relevant than p2) = w .

(Rotten Tomatoes, IMDb)

(IMDb, Rotten Tomatoes) x 8000

x 2000

(Rotten Tomatoes, IMDb)

(IMDb, Rotten Tomatoes) x 30

x 70

(IMDb, Rotten Tomatoes, 0.8)

(Rotten Tomatoes, IMDb, 0.2)

(IMDb, Rotten Tomatoes, 0.3)

(Rotten Tomatoes, IMDb, 0.7)

Finally, we have many weighted pairwise preferences for each type.
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Relevance Optimization for P(p | t)

A pairwise preference can be treated as a partial constraint.

Assume P(p | t) can be represented by a logistic function:

P (pi | t) =
1

1 + exp (−θi ,t)
θi,t is a parameter for pi and the type t.
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Relevance Optimization for P(p | t) (Cont’d)

Adopt the RankNet cost function to optimize pairwise preference∑
e∈E(t)

∑
(p1,p2,w)∈Re

w · log (1 + exp (P (p2 | t)− P (p1 | t)))

Re is the list of weighted preferences for the entity e.
P (pi | t) is the relevance using current parameters θi,t .

The gradient descent method is applied for optimization.
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Type Distribution P(t | q)

Estimate how much users treat q is a query of the type t.

Adopt click-through data and Bayesian m-estimate smoothing

P (t | q) =

∑
p∈S P (t | p) · Click (p, q) + m · P (t)

m +
∑

t∈T (q)

∑
p∈S P (t | p) · Click (p, q)

S is the set containing all patterns.
P (t) can be computed by normalizing the number of entities.
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Type Distribution P(t | q) (Cont’d)

P (t | p) can be calculated with the Bayes’ theorem as follows

P (t | p) =
P (p | t) · P (t)

P (p)

P (p | t) P (p | t) is pattern-type relevance.
P (p) can be computed by normalizing clicks in logs.
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Parameter Optimization

For multiple parameters, we would like to learn β parameters.

Use the RankNet cost function for optimization∑
q∈Q

∑
(u1,u2)∈R(q)

log (1 + exp (P (u2 | q, iu2)− P (u1 | q, iu1))) ,

R (q) is a set of preferences for URLs from q’s click-though data.
iu is the ranked position of u in the original search result.
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Future Work

Supervised Approach

Directly apply the ranking consistency into learning to rank
Optimize the ranking consistency and cost function at the same time

Unsupervised Approach

Consider the ranking consistency while calculating retrieval functions
Not only compute simple measures, but also leverage other queries
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Evaluation of Pattern-Type Relevance

To estimate pattern-type relevance P(p | t) is the key of the model.

Totally 107,531 URL patterns are extracted.

Collect the top five patterns for each type for evaluation

Baseline is a frequency-based model by clicked counts.

Use NDCG@k as the evaluation measure

Hire two assessors to manually judge collected URL patterns

Three kinds of relevance scores

Relevant and important (Score 5) - ESPN.com to athletes
Generally relevant (Score 1) - Biography.com to athletes
Irrelevant (Score 0) - IMDb to athletes
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Evaluation of Pattern-Type Relevance (Cont’d)

All collected patterns are annotated by two assessors.

80.76% agreement with 0.65 unweighted kappa coefficient

Measure Frequency Our Approach

NDCG@1 0.9607 0.9821 (+2.23%)
NDCG@2 0.7655 0.8145 (+5.87%)
NDCG@3 0.6748 0.7363 (+8.61%)
NDCG@4 0.6267 0.6800 (+8.07%)
NDCG@5 0.5857 0.6450 (+9.69%)

Our approach significantly outperforms the baseline.

The baseline is biased by popular entities.
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