

Improving Ranking Consistency for Web Search by Leveraging a Knowledge Base and Search Logs

Jyun-Yu Jiang[†], Jing Liu[‡], Chin-Yew Lin[‡] and Pu-Jen Cheng[†]

[†]National Taiwan University [‡]Microsoft Research

Research

October 22, 2015 (CIKM)

Improving Ranking Consistency for Web Search

October 22, 2015 (CIKM) 0 / 27

Introduction	Ranking Consistency 00000000	Consistent Ranking Model 0000	Ensemble-based Re-ranking 000	Experiments 0000000	Conclusions
Outline	e for Sectio	n 1			

- Relevance Ranking in Web Search
- Ranking Consistency

2) Ranking Consistency in Web Search

- 3 Consistent Ranking Model (Stage 1)
- 4 Ensemble-based Re-ranking (Stage 2)
- 5 Experiments
- 6 Conclusions and Future Work

Why Relevance Ranking in Web Search?

- Sort web pages by users' information needs • The higher the rank, the more relevant the page.
- Filter out irrelevant web pages for users
 - More than 968 million websites in 2014

[http://www.internetlivestats.com/]

- ∢ ∃ ▶

ELE SQC

The Goal of Relevance Ranking in Web Search

Estimate the relevance of each web page to a query, and then return a ranked list of web pages with higher relevance.

Introduction $\circ \bullet \circ$	Ranking Consistency	Consistent Ranking Model	Ensemble-based Re-ranking	Experiments 0000000	Conclusions
_					

Conventional Approaches

Bag-of-Words Retrieval Model	Learning to Rank	
 Retrieval Functions TF-IDF, Okapi-BM25, etc. Adjust by User Feedback e.g., Rocchio relevance feedback 	 Feature Extraction e.g., contents and URLs Supervised Ranking Model RankNet, LambdaMART, etc. 	
Specialized Web Search	Accurate Evaluation	
Personalized Search	• Rank of rel. docs (e.g., NDCG)	
• Federated Web Search	• User click-through data	

However, all of previous work focus on optimizing queries separately.

Query "Kobe Bryant"	Query "Tim Duncan" less consistent	Query "Kevin Durant"
Official Website of Kobe Bryant	Tim Duncan 21	Kevin Durant
kobebryant.com	slamduncan.com	kevindurant.com
Kobe Bryant - Wikipedia, the free encyclopedia	Tim Duncan - Wikipedia, the free encyclopedia	Kevin Durant - Wikipedia, the free encyclopedia
en.wikipedia.org/wiki/Kobe_Bryant	en.wikipedia.org/wiki/Tim_Duncan	en.wikipedia.org/wiki/Kevin_Durant
Kobe Bryant Stats - ESPN.com - Go.com	Tim Duncan - ESPN.com - Go.com	Kevin Durant Stats, Video, Bio, Profile NBA.com
espn.go.com/nba/player/_/id/110/kobe-bryant	espn.go.com/nba/player/_/id/215/tim-duncan	www.nba.com/playerfile/kevin_durant/
Kobe Bryant NBA Stats Basketball-Reference.com	Tim Duncan Stats, Video, Bio, Profile NBA.com	Kevin Durant - IMDb
www.basketball-reference.com/players/b/bryanko01.html	www.nba.com/playerfile/tim_duncan/	www.imdb.com/name/nm2562621/
Kobe Bryant Stats, Video, Bio, Profile NBA.com	Tim Duncan NBA Stats Basketball-Reference.com	Kevin Durant - Biography.com
www.nba.com/playerfile/kobe_bryant/	www.basketball-reference.com/players/d/davisgl01.html	www.biography.com/people/tim-duncan-40996
Kobe Bryant - IMDb	Tim Duncan - Biography.com	Kevin Durant - ESPN.com - Go.com
www.imdb.com/name/nm1101483/	www.blography.com/people/tim-duncan-40996	espn.go.com/nba/player/_/id/3202/kevin-durant
Kobe Bryant - Biography.com	Tim Duncan - IMDb	Tim Duncan NBA Stats Basketball-Reference.com
www.biography.com/people/kobe-bryant-10683945	www.imdb.com/name/nm1989163/	www.basketball-reference.com/players/d/davisgl01.html

more consistent

J.-Y. Jiang et al. (NTU & MSR)

Improving Ranking Consistency for Web Search

October 22, 2015 (CIKM) 3 / 27

ELE NOR

Query "Kobe Bryant"	Query "Tim Duncan" less consistent	Query "Kevin Durant"
Official Website of Kobe Bryant	Tim Duncan 21	Kevin Durant
kobebryant.com	slamduncan.com	kevindurant.com
Kobe Bryant - Wikipedia, the free encyclopedia	Tim Duncan - Wikipedia, the free encyclopedia	Kevin Durant - Wikipedia, the free encyclopedia
en.wikipedia.org/wiki/Kobe_Bryant	en.wikipedia.org/wiki/Tim_Duncan	en.wikipedia.org/wiki/Kevin_Durant
Wikipedia	Tim Duncan - ESPN.com - Go.com espn.go.com/nba/player/_/ld/215/tim-duncan	Kevin Durant Stats, Video, Bio, Profile NBA.com www.nba.com/playerfile/kevin_durant/
Kobe Bryant NBA Stats Basketball-Reference.com	Tim Duncan Stats, Video, Bio, Profile NBA.com	Kevin Durant - IMDb
www.basketball-reference.com/players/b/bryanko01.html	www.nba.com/playerfile/tim_duncan/	www.imdb.com/name/nm2562621/
Kobe Bryant Stats, Video, Bio, Profile NBA.com	Tim Duncan NBA Stats Basketball-Reference.com	Kevin Durant - Biography.com
www.nba.com/playerfile/kobe_bryant/	www.basketball-reference.com/players/d/davisgl01.html	www.blography.com/people/tim-duncan-40996
Kobe Bryant - IMDb	Tim Duncan - Biography.com	Kevin Durant - ESPN.com - Go.com
www.imdb.com/name/nm1101483/	www.blography.com/people/tim-duncan-40996	espn.go.com/nba/player/_/id/3202/kevin-durant
Kobe Bryant - Biography.com	Tim Duncan - IMDb	Tim Duncan NBA Stats Basketball-Reference.com
www.biography.com/people/kobe-bryant-10683945	www.imdb.com/name/nm1989163/	www.basketball-reference.com/players/d/davisgl01.html

more consistent

I= nan

Query "Kobe Bryant"	Query "Tim Duncan" less consistent	Query "Kevin Durant"
Official Website of Kobe Bryant	Tim Duncan 21	Kevin Durant
kobebryant.com	slamduncan.com	kevindurant.com
Kobe Bryant - Wikipedia, the free encyclopedia	Tim Duncan - Wikipedi	Kevin Durant - Wikipedia, the free encyclopedia
en.wikipedia.org/wiki/Kobe_Bryant	en.wikipedia.org/wiki/Tim_Du	en.wikipedia.org/wiki/Kevin_Durant
Kobe Bryant Stats - ESPN.com - Go.com	Tim Duncan - ESPN.com - Go.com	Kevin Durant Stats, Video, Bio, Profile NBA.com
espn.go.com/nba/player/_/id/110/kobe-bryant	espn.go.com/nba/player/_/id/215/tim-duncan	www.nba.com/playerfile/kevin_durant/
Kobe Bryant NBA Stats Basketball-Reference.com	Tim Duncan Stats, Video, Bio, Profile NBA.com	Kevin Durant - IMDb
www.basketball-reference.com/players/b/bryanko01.html	www.nba.com/playerfile/tim_duncan/	www.imdb.com/name/nm2562621/
Kobe Bryant Stats, Video, Bio, Profile NBA.com	Tim Duncan NBA Stats Basketball-Reference.com	Kevin Durant - Biography.com
www.nba.com/playerfile/kobe_bryant/	www.basketball-reference.com/players/d/davisgl01.html	www.biography.com/people/tim-duncan-40996
Kobe Bryant - IMDb	Tim Duncan - Biography.com	Kevin Durant - ESPN.com - Go.com
www.imdb.com/name/nm1101483/	www.biography.com/people/tim-duncan-40996	espn.go.com/nba/player/_/id/3202/kevin-durant
Kobe Bryant - Biography.com	Tim Duncan - IMDb	Tim Duncan NBA Stats Basketball-Reference.com
www.biography.com/people/kobe-bryant-10683945	www.imdb.com/name/nm1989163/	www.basketball-reference.com/players/d/davisgl01.html

more consistent

J.-Y. Jiang et al. (NTU & MSR)

Improving Ranking Consistency for Web Search

October 22, 2015 (CIKM) 3 / 27

ELE DOG

Query "Kobe Bryant"	Query "Tim Duncan"	less consistent	Query "Kevin Durant"
Official Website of Kobe Bryant	Tim Duncan 21		Kevin Durant
kobebryant.com	slamduncan.com		kevindurant.com
Kobe Bryant - Wikipedia, the free encyclopedia	Tim Duncan - Wikipedia, th en.wikipedia.org/wiki/Tim_Duncan	e free encyclopedia	Kevin Durant - Wikipedia, the free encyclopedia en.wikipedia.org/wiki/Kevin_Durant
Kobe Bryant Stats - ESPN.com - Go.com	Tim Duncan - ESPN.com - (Go.com	Kevin Durant Stats, Video, Bio, Profile NBA.com
espn.go.com/nba/player/_/ld/110/kobe-bryant	espn.go.com/nba/player/_/id/215/1	Im-duncan	www.nba.com/playerfile/kevin_durant/
Kobe Bryant NBA Stats Basketball-Reference.com	Tim Duncan Stats, Video, B	io, Profile NBA.com	Kevin Durant - IMDb
www.basketball-reference.com/players/b/bryanko01.html	www.nba.com/olawarfile/tim_duar		www.imdb.com/name/nm2562621/
Kobe Bryant Stats, Video, Bio, Profile NBA.com	Tim Dunca	for celebrities	Kevin Durant - Biography.com
www.nba.com/playerfile/kobe_bryant/	www.basketb		www.biography.com/people/tim-duncan-40996
Kobe Bryant - IMDb	Tim Duncan - Biography.co	uncan-40996	Kevin Durant - ESPN.com - Go.com
www.imdb.com/name/nm1101483/	www.biography.com/people/tim-d		espn.go.com/nba/player/_/id/3202/kevin-durant
Kobe Bryant - Biography.com	Tim Duncan - IMDb	/	Tim Duncan NBA Stats Basketball-Reference.com
www.biography.com/people/kobe-bryant-10683945	www.imdb.com/name/nm1989163		www.basketball-reference.com/players/d/davisgl01.html

more consistent

ELE DOG

Query "Kobe Bryant"	Query "Tim Duncan" less consistent	Query "Kevin Durant"
Official Website of Kobe Bryant	Tim Duncan 21	Kevin Durant
Kobe Bryant - Wikipedia, the free encyclopedia en.wikipedia.org/wiki/Kobe_Bryant	Rankings are much different!	Kevin Durant - Wikipedia, the free encyclopedia en.wikipedia.org/wiki/Kevin Durant
Kobe Bryant Stats - ESPN.com - Go.com	Tim Duncan - ESPN.com - Go.com	Kevin Durant Stats, Video, Bio, Profile NBA.com
espn.go.com/nba/player/_/id/110/kobe-bryant	espn.go.com/nba/player/_/id/215/tim-duncan	www.nba.com/playerfile/kevin_durant/
Kobe Bryant NBA Stats Basketball-Reference.com	Tim Duncan Stats, Video, Bio, Profile NBA.com	Kevin Durant - IMDb
www.basketball-reference.com/players/b/bryanko01.html	www.nba.com/playerfile/tim_duncan/	www.imdb.com/name/nm2562621/
Kobe Bryant Stats, Video, Bio, Profile NBA.com	Tim Duncan NBA Stats Basketball-Reference.com	Kevin Durant - Biography.com
www.nba.com/playerfile/kobe_bryant/	www.basketball-reference.com/players/d/davisgl01.html	www.biography.com/people/tim-duncan-40996
Kobe Bryant - IMDb	Tim Duncan - Biography.com	Kevin Durant - ESPN.com - Go.com
www.imdb.com/name/nm1101483/	www.biography.com/people/tim-duncan-40996	espn.go.com/nba/player/_/id/3202/kevin-durant
Kobe Bryant - Biography.com	Tim Duncan - IMDb	Tim Duncan NBA Stats Basketball-Reference.com
www.biography.com/people/kobe-bryant-10683945	www.imdb.com/name/nm1989163/	www.basketball-reference.com/players/d/davisgl01.html

more consistent

J.-Y. Jiang et al. (NTU & MSR)

Improving Ranking Consistency for Web Search

October 22, 2015 (CIKM) 3 / 27

I= nan

Introduction 000	Ranking Consistency	Consistent Ranking Model	Ensemble-based Re-ranking 000	Experiments 0000000	Conclusions
Outline	e for Sectio	n 2			

Ranking Consistency in Web Search

- Topical Cluster in Web Search
- User Surveys via Amazon Mechanical Turk
- Challenges in Ranking Consistency
- Overview of Our Approach

Consistent Ranking Model (Stage 1)

4 Ensemble-based Re-ranking (Stage 2)

Experiments

6 Conclusions and Future Work

• Web pages about a topic on a website can be treated a topical cluster

Can these information be well exploited?

J.-Y. Jiang et al. (NTU & MSR)

Improving Ranking Consistency for Web Search

October 22, 2015 (CIKM) 4 / 27

Ranking Consistency

Consistent Ranking Model

Ensemble-based Re-ranking

Experiments Conclusions

While ranking web pages for three queries...

-

Ranking Consistency

Consistent Ranking Model

Ensemble-based Re-ranking

Experiments Conclusions

While ranking web pages for three queries...

-

Ranking Consistency

Consistent Ranking Model

Ensemble-based Re-ranking

Experiments Conclusions

While ranking web pages for three queries...

Ranking Consistency

Consistent Ranking Model

Ensemble-based Re-ranking

Experiments Conclusions

While ranking web pages for three queries...

- The relevance of web pages in the same topical clusters would be consistent for similar search intents.
- Ranking consistency may help the relevance ranking in web search.

The goal of this paper

Learn the ranking consistency, and then improve the relevance ranking

5 1 SQA

- Two user surveys via Amazon Mechanical Turk (MTurk)
 - a crowdsourcing platform for work that requires human intelligence

amazon mechanical turk Artificial Artificial Intelligence

- Five pairs of queries of five different types
- Re-rank results to be consistent, and then ask whether are improved

First Survey	Second Survey
 observe two results together 	• observe two results separately
• 25 questions for 10 workers	• 50 questions for 10 workers

Introduction Ranking Consistency Consistent Ranking Model Ensemble-based Re-ranking Experiments Conclusions 00000000

User Survey Results

The ranking consistency is realizable and more preferable!

Challenge 1

- How to determine similar-intent queries and topical clusters?
- How to consistently rank topical clusters?

= 900

Challenge 2

• How to handle web pages not in any topical cluster?

• e.g., official websites and personal web pages

Moreover, the best ranking for each query might be a little different.

A B F A B F

ELE NOR

Introduction Ranking Consistency Consistent Ranking Model Ensemble-based Re-ranking Experiments Conclusions 000 0000000 Conclusions

Two-stage Re-ranking Model

Stage 1: Consistent Ranking Model

- Apply a knowledge base to determine queries with similar intents
- Establish topical clusters by URL patterns
- Learn the relevance of topical clusters from click-through logs

Stage 2: Ensemble-based Re-ranking

- Re-rank search results of an original ranker with results from Stage 1
- Apply several features to decide the parameter in the ensemble

3 × 4 3 × 3 1 × 0 0 0

Introduction 000	Ranking Consistency	Consistent Ranking Model	Ensemble-based Re-ranking	Experiments 0000000	Conclusions
Outline	e for Sectio	n 3			

2 Ranking Consistency in Web Search

3 Consistent Ranking Model (Stage 1)

- Model Formalities and Formulation
- Pattern-Type Relevance and Type Distribution

4 Ensemble-based Re-ranking (Stage 2)

5 Experiments

- Named entity recognition in queries (NERQ)
 - More than 70% queries cover entities [Guo et al., SIGIR'09].
- Entity types in knowledge bases
 - Knowledge bases summarize entity types.
 - Queries with same types may share similar intents

EL OQO

- Named entity recognition in queries (NERQ)
 - More than 70% queries cover entities [Guo et al., SIGIR'09].
- Entity types in knowledge bases
 - Knowledge bases summarize entity types.
 - Queries with same types may share similar intents

ELE NOR

- Named entity recognition in queries (NERQ)
 - More than 70% queries cover entities [Guo et al., SIGIR'09].
- Entity types in knowledge bases
 - Knowledge bases summarize entity types.
 - Queries with same types may share similar intents

I DOC

- Named entity recognition in queries (NERQ)
 - More than 70% queries cover entities [Guo et al., SIGIR'09].
- Entity types in knowledge bases
 - Knowledge bases summarize entity types.
 - Queries with same types may share similar intents

ELE NOR

- Named entity recognition in queries (NERQ)
 - More than 70% queries cover entities [Guo et al., SIGIR'09].
- Entity types in knowledge bases
 - Knowledge bases summarize entity types.
 - Queries with same types may share similar intents

ELE NOR

- Named entity recognition in queries (NERQ)
 - More than 70% queries cover entities [Guo et al., SIGIR'09].
- Entity types in knowledge bases
 - Knowledge bases summarize entity types.
 - Queries with same types may share similar intents

ELE SQC

- Named entity recognition in queries (NERQ)
 - More than 70% queries cover entities [Guo et al., SIGIR'09].
- Entity types in knowledge bases
 - Knowledge bases summarize entity types.
 - Queries with same types may share similar intents

ELE NOR

Topical Clusters and URL Patterns

- Some websites have specific contents.
 - e.g., ESPN.com contains web pages about different sports.
- Pages in the same topical cluster usually share the same URL pattern.
 - espn.go.com/nba/player/_/id/*/* is for basketball players.
 - espn.go.com/mlb/player/_/id/*/* is for baseball players.
- URL Pattern Extraction [Jiang et al., WWW'12]
 - Collect URL collection from search logs
 - Generalize URLs into regular expressions as URL patterns

= 900

Experiments Conclusions

Consistent Ranking Model (Stage 1)

Assumption 1

• The relevance of a page is decided by the pattern relevance.

$$P(u \mid q) = \begin{cases} P(p \mid q) & \text{, if } u \text{ is matched by pattern } p \\ 0 & \text{, otherwise} \end{cases}$$

Assumption 2

• The relevance distribution is an aggregation over query types.

$$P(p \mid q) = \sum_{t \in T(q)} P(p \mid t, q) \cdot P(t \mid q) = \sum_{t \in T(q)} P(p \mid t) \cdot P(t \mid q)$$

Question: How to compute $P(p \mid t)$ and $P(t \mid q)$?

J.-Y. Jiang et al. (NTU & MSR)

Improving Ranking Consistency for Web Search

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三回日 のの⊙

Ensemble-based Re-ranking

Experiments Conclusions

Pattern-Type Relevance and Type Distribution

Pattern-Type Relevance $P(p \mid t)$

- Extract pairwise preference (p_1, p_2) from user feedback in logs
- Aggregate (p_1, p_2) into (p_1, p_2, w) by each entity to avoid popularity biases
- Learn the relevance $P(p \mid t)$ by rank aggregation

Type Distribution $P(t \mid q)$

- Estimate how much users treat q is a query of the type t.
- Adopt click-through data and Bayesian *m*-estimate smoothing

$$P(t \mid q) = \frac{\sum_{p \in S} P(t \mid p) \cdot Click(p, q) + m \cdot P(t)}{m + \sum_{t \in T(q)} \sum_{p \in S} P(t \mid p) \cdot Click(p, q)}$$

See our paper for detailed information.

J.-Y. Jiang et al. (NTU & MSR)

Improving Ranking Consistency for Web Search

물 이 제품 이 물 님 October 22, 2015 (CIKM) 15 / 27

< 4 →

Outline for Section 4	Introduction 000	Ranking Consistency	Consistent Ranking Model	Ensemble-based Re-ranking	Experiments 0000000	Conclusions
	Outline	e for Sectio	n 4			

2 Ranking Consistency in Web Search

3 Consistent Ranking Model (Stage 1)

4 Ensemble-based Re-ranking (Stage 2)

- Model Formulation
- Multiple Parameters
- Re-ranking Features

5 Experiments

6 Conclusions and Future Work

- Ensemble of the consistent ranking model and the original ranker
- For a query q and a URL u ranked in the position i by the original ranker, the relevance can be computed as:

$$P(u \mid q, i) = \underbrace{\lambda \cdot P(u \mid q)}_{Consistency \ Ranking} + \underbrace{(1 - \lambda) \cdot P(u \mid i)}_{Original \ Ranker},$$

ELE SQC

Introduction 000	Ranking Consistency	Consistent Ranking Model	Ensemble-based Re-ranking ○●○	Experiments 0000000	Conclusions
Multip	le Paramete	ers			

- In different cases, the best parameter might be also different.
 - $\bullet\,$ e.g., λ should be lower for pages in personal sites.
- Replace the parameter λ with a logistic function
 - Then some features can be the input and adjust the parameter!

$$\lambda(X) = \frac{1}{1 + \exp(-f(X))}, \quad f(X) = \beta_0 + \sum_{i=1}^{|X|} \beta_i \cdot x_i$$

- x_i is the *i*-th feature in the feature set X
- β_0 is the bias parameter
- |X| = 0 is a special case of single parameter.
- Use the RankNet cost function to optimize β parameters.

See our paper for detailed optimization.

- Various features in three levels are considered.
 - including query features, entity features and URL features
- Helpful in recognizing different situations and adjusting the parameter

Entity Features	URL Features	
 number of types 	 pattern matching 	
• type entropy	 original position 	
• entity frequency	 consistent relevance 	
	 N-gram similarity 	
	 host and URL 	
	 entity Features number of types type entropy entity frequency 	

There are totally 10 features used in our approach.

Introduction 000	Ranking Consistency	Consistent Ranking Model	Ensemble-based Re-ranking	Experiments	Conclusions
Outline	e for Sectio	n 5			
1 Intro	duction				

- 2 Ranking Consistency in Web Search
- 3 Consistent Ranking Model (Stage 1)
- 4 Ensemble-based Re-ranking (Stage 2)

5 Experiments

- Experimental Settings
- Evaluation of Ranking Consistency
- Evaluation of Re-ranking Models
- Feature Analysis

6 Conclusions and Future Work

J.-Y. Jiang et al. (NTU & MSR) Improving Ranking Consistency for Web Search October 22, 2015 (CIKM) 18 / 27

Knowledge Base

- Freebase dumped in January 2014
- Remove very spare types with less than 5 entities
- Finally 444 types in the type set

Search Engine Logs

- Logs of a commercial search engine in November 2013
- 56,466,534 queries for 847,682 distinct entities after extraction
- Queries of 21 days as training data, the remaining as testing data
- Treat URLs with SAT-Clicks as the ground-truth

EL OQO

• Seven testing subsets with different conditions

Dataset	Description
All	All queries in testing data.
Head	Queries with top 10% entity frequency.
Tail	Queries with bottom 10% entity frequency.
New	Queries which do not appear in training data.
Peo.	Queries with type people/person.
Loc.	Queries with type location/location.
Org.	Queries with type organization/organization.

person, location and organization cover most entities

- Propose a new metric based on Kendall's tau
- For a type t and a set of queries Q(t) with the type t

$$\frac{1}{\left(\begin{array}{c}|Q(t)|\\2\end{array}\right)}\sum_{q_{1}\in Q(t)}\sum_{q_{2}\in Q(t)\setminus q_{1}}\boldsymbol{\tau}\left(r\left(q_{1},t\right),r\left(q_{2},t\right)\right)$$

- r(q, t) denotes the ranking result of t's URL patterns with query q.
- au (r₁, r₂) is the standard Kendall's tau rank correlation coefficient.
- Give zero rank scores to patterns without appearance in search results

Baseline

• The original ranker in the search engine (Default).

- ∢ ∃ ▶

ELE SQC

 Introduction
 Ranking Consistency
 Consistent Ranking Model
 Ensemble-based Re-ranking
 Experiments

 000
 000
 000
 000
 000
 000
 000

 Evaluation of Ranking Consistency (Cont'd)

Default Our Approach Type Overall types 0.5671 0.5943 (+4.78%)0.6517 (+1.67%)people/person 0.6410 location/location 0.6327 0.6455 (+2.02%)0.7588 (+0.73%)0.7533 organization/organization celebrities/celebrity 0.6306 0.6697 (+6.21%)0.4842 (+5.51%)music/album 0.4589 book/book 0.5367 0.5544 (+3.31%)

Our method significantly improved the ranking consistency.

ELE NOR

E + 4 E +

Conclusions

Introduction Ranking Consistency Consistent Ranking Model Ensemble-based Re-ranking 000 0000000 0000 000

Experiments Conclusions

- - E > - E >

Evaluation of Ranking Consistency (Cont'd)

Туре	Default	Our Approach
Overall types	0.5671	0.5943 (+4.78%)
people/person	0.6410	0.6517 (+1.67%)
location/location	0.6327	0.6455 (+2.02%)
organization/organization	0.7533	0.7588 (+0.73%)
celebrities/celebrity	0.6306	0.6697 (+6.21%)
music/album	0.4589	0.4842 (+5.51%)
book/book	0.5367	0.5544 (+3.31%)

people and location improve less than overall because they are too general.

Introduction Ranking Consistency Consistent Ranking Model 000 Ensemble-based Re-ranking 000 000 Ensemble-based Re-ranking 000 000 000

Evaluation of Ranking Consistency (Cont'd)

Туре	Default	Our Approach
Overall types	0.5671	0.5943 (+4.78%)
people/person	0.6410	0.6517 (+1.67%)
location/location	0.6327	0.6455 (+2.02%)
organization/organization	0.7533	0.7588 (+0.73%)
celebrities/celebrity	0.6306	0.6697 (+6.21%)
music/album	0.4589	0.4842 (+5.51%)
book/book	0.5367	0.5544 (+3.31%)

celebrity improves the most because **many sites are about celebrities**.

ELE SQC

Conclusions

Introduction Ranking Consistency Consistent Ranking Model Ensemble-based Re-ranking I 000 0000000 0000 000 000

Experiments Conclusions

Evaluation of Ranking Consistency (Cont'd)

Туре	Default	Our Approach
Overall types	0.5671	0.5943 (+4.78%)
people/person	0.6410	0.6517 (+1.67%)
location/location	0.6327	0.6455 (+2.02%)
organization/organization	0.7533	0.7588 (+0.73%)
celebrities/celebrity	0.6306	0.6697 (+6.21%)
music/album	0.4589	0.4842 (+5.51%)
book/book	0.5367	0.5544 (+3.31%)

organization improves the least because they usually have only official sites.

ELE NOR

・ 同 ト ・ ヨ ト ・ ヨ ト

Introduction Ranking Consistency Consistent Ranking Model Ensemble-based Re-ranking Experiments Conclusions

Evaluation of Re-ranking Models

Baseline Method

- the default ranker of that commercial search engine
 - a learning-to-rank model with myriad features
- a strong competitor (as a product in the real-world search engine)
- evaluate whether the re-ranking model is effective

Evaluation Measure

- Mean Average Precision (MAP)
 - consider all relevant (clicked) documents
- Mean Reciprocal Rank (MRR)
 - consider the first predicted relevant document

3 1 1 N Q Q

Ranking Consistency

Consistent Ranking Model

Ensemble-based Re-ranking

Experiments (

Conclusions

Evaluation of Re-ranking Models (Cont'd)

		Dofault	Our Approach	Our Approach
		Delault	(single params)	(multiple params)
A 11	MAP	0.7272	0.7454 (+2.49%)	0.7571 (+4.12%)
All	MRR	0.7288	0.7469 (+2.49%)	0.7589 (+4.13%)
	MAP	0.7294	0.7491 (+2.70%)	0.7611 (+4.34%)
пеаа	MRR	0.7309	0.7505 (+2.68%)	0.7627 (+4.35%)
Tail	MAP	0.7116	0.7228 (+1.57%)	0.7384 (+3.76%)
Tall	MRR	0.7138	0.7251 (+1.58%)	0.7408 (+3.78%)
New	MAP	0.7272	0.7453 (+2.49%)	0.7572 (+3.83%)
New	MRR	0.7287	0.7468 (+2.48%)	0.7589 (+3.83%)
Dee	MAP	0.7468	0.7756 (+3.86%)	0.7834 (+4.89%)
Peo.	MRR	0.7483	0.7772 (+3.86%)	0.7851 (+4.92%)
	MAP	0.7268	0.7465 (+2.72%)	0.7573 (+4.20%)
LOC.	MRR	0.7283	0.7481 (+2.71%)	0.7588 (+4.19%)
0.50	MAP	0.8422	0.8615 (+2.28%)	0.8674 (+2.99%)
Org.	MRR	0.8432	0.8624 (+2.28%)	0.8684 (+3.00%)

J.-Y. Jiang et al. (NTU & MSR)

Ranking Consistency

Consistent Ranking Model

Ensemble-based Re-ranking

Experiments Conclusions

Evaluation of Re-ranking Models (Cont'd)

		Dofault	Our Approach	Our Approach
		Delault	(single params)	(multiple params)
A 11	MAP	0.7272	0.7454 (+2.49%)	0.7571 (+4.12%)
All	MRR	0.7288	0.7469 (+2.49%)	0.7589 (+4.13%)
Head	MAP	0.7294	0.7491 (+2.70%)	0.7611 (+4.34%)
пеац	MRR	0.7309	0.7505 (+2.68%)	0.7627 (+4.35%)
Tail	MAP	0.7116	0.7228 (+1.57%)	0.7384 (+3.76%)
Tan	MRR	0.7138	0.7251 (+1.58%)	0.7408 (+3.78%)

For the default ranking, head/tail queries are better/lower performance.

Ranking Consistency

Consistent Ranking Model

Ensemble-based Re-ranking

Experiments Conclusions 0000000

Evaluation of Re-ranking Models (Cont'd)

		Default	Our Approach	Our Approach
		Delault	(single params)	(multiple params)
A11	MAP	0.7272	0.7454 (+2.49%)	0.7571 (+4.12%)
	MRR	0.7288	0.7469 (+2.49%)	0.7589 (+4.13%)
Peo.	MAP	0.7468	0.7756 (+3.86%)	0.7834 (+4.89%)
	MRR	0.7483	0.7772 (+3.86%)	0.7851 (+4.92%)
Loc	MAP	0.7268	0.7465 (+2.72%)	0.7573 (+4.20%)
LUC.	MRR	0.7283	0.7481 (+2.71%)	0.7588 (+4.19%)
Ora	MAP	0.8422	0.8615 (+2.28%)	0.8674 (+2.99%)
Org.	MRR	0.8432	0.8624 (+2.28%)	0.8684 (+3.00%)

Peo. and Org. have better performance because they have own official sites.

Ranking Consistency

Consistent Ranking Model

Ensemble-based Re-ranking

Experiments

Conclusions

Evaluation of Re-ranking Models (Cont'd)

		Default	Our Approach	Our Approach
		Delault	(single params)	(multiple params)
A11	MAP	0.7272	0.7454 (+2.49%)	0.7571 (+4.12%)
	MRR	0.7288	0.7469 (+2.49%)	0.7589 (+4.13%)
Head	MAP	0.7294	0.7491 (+2.70%)	0.7611 (+4.34%)
пеац	MRR	0.7309	0.7505 (+2.68%)	0.7627 (+4.35%)
	MAP	0.7116	0.7228 (+1.57%)	0.7384 (+3.76%)
Tail	MRR	0.7138	0.7251 (+1.58%)	0.7408 (+3.78%)
Nau	MAP	0.7272	0.7453 (+2.49%)	0.7572 (+3.83%)
INEW	MRR	0.7287	0.7468 (+2.48%)	0.7589 (+3.83%)
Dee	MAP	0.7468	0.7756 (+3.86%)	0.7834 (+4.89%)
Feo.	MRR	0.7483	0.7772 (+3.86%)	0.7851 (+4.92%)
1	MAP	0.7268	0.7465 (+2.72%)	0.7573 (+4.20%)
Loc.	MRR	0.7283	0.7481 (+2.71%)	0.7588 (+4.19%)
0.57	MAP	0.8422	0.8615 (+2.28%)	0.8674 (+2.99%)
Org.	MRR	0.8432	0.8624 (+2.28%)	0.8684 (+3.00%)

Using multiple parameters achieves better performance.

J.-Y. Jiang et al. (NTU & MSR)

Improving Ranking Consistency for Web Search

October 22, 2015 (CIKM) 24 / 27

Ranking Consistency

Consistent Ranking Model

Ensemble-based Re-ranking

Experiments Conclusions

Evaluation of Re-ranking Models (Cont'd)

		Defeult	Our Approach	Our Approach
		Delault	(single params)	(multiple params)
A 11	MAP	0.7272	0.7454 (+2.49%)	0.7571 (+4.12%)
All	MRR	0.7288	0.7469 (+2.49%)	0.7589 (+4.13%)
Hood	MAP	0.7294	0.7491 (+2.70%)	0.7611 (+4.34%)
Tieau	MRR	0.7309	0.7505 (+2.68%)	0.7627 (+4.35%)
Tail	MAP	0.7116	0.7228 (+1.57%)	0.7384 (+3.76%)
Tall	MRR	0.7138	0.7251 (+1.58%)	0.7408 (+3.78%)

Although head queries are still better, tail queries have great improvements.

Introduction Ra

Ranking Consistency

Consistent Ranking Model

Ensemble-based Re-ranking

Experiments Co

Conclusions

Evaluation of Re-ranking Models (Cont'd)

		Default	Our Approach	Our Approach
		Delault	(single params)	(multiple params)
All	MAP	0.7272	0.7454 (+2.49%)	0.7571 (+4.12%)
	MRR	0.7288	0.7469 (+2.49%)	0.7589 (+4.13%)
Peo.	MAP	0.7468	0.7756 (+3.86%)	0.7834 (+4.89%)
	MRR	0.7483	0.7772 (+3.86%)	0.7851 (+4.92%)
Loc.	MAP	0.7268	0.7465 (+2.72%)	0.7573 (+4.20%)
	MRR	0.7283	0.7481 (+2.71%)	0.7588 (+4.19%)
Org.	MAP	0.8422	0.8615 (+2.28%)	0.8674 (+2.99%)
	MRR	0.8432	0.8624 (+2.28%)	0.8684 (+3.00%)

Peo. and Loc. improve more because they have many pages in topical clusters. Org. improves less because they have few pages in topical clusters.

Absolute Value of Feature Weights

-

Outline	e for Sectio	n 6			

- 2 Ranking Consistency in Web Search
- 3 Consistent Ranking Model (Stage 1)
- 4 Ensemble-based Re-ranking (Stage 2)

5 Experiments

6 Conclusions and Future Work

Introduction 000	Ranking Consistency	Consistent Ranking Model	Ensemble-based Re-ranking	Experiments 0000000	Conclusions
Conclu	sions and F	uture Work			

- Propose the new idea called ranking consistency in web search
- Two convincing user surveys on Amazon Mechanical Turk
- Propose a two-stage re-ranking model by leveraging a knowledge base and click-through data
- Propose features in three levels to adjust the ensemble
- Future Work
 - Supervised Approach
 - Optimize the ranking consistency and cost function at the same time
 - Unsupervised Approach
 - Consider the ranking consistency while calculating retrieval functions

Thank you for listening! Any question?

Contact Information

- Jyun-Yu (John) Jiang
- http://jyunyu.csie.org/
- jyunyu.jiang@gmail.com

ELE NOR

-

Illustration of Surveys in MTurk

Question 3

<u>Upper 1</u> (jason maxiell)	<u>Upper 2</u> (mehmet okur)
1: http://en.wikipedia.org/wiki/Jason_Maxiell	1: http://en.wikipedia.org/wiki/Mehmet_Okur
2: http://espn.go.com/nba/player/_/id/2775/jason-maxiell	2: http://espn.go.com/nba/player/_/id/1014/mehmet-okur
3: http://www.rotoworld.com/player/nba/1155/jason-maxiell	3: http://www.basketball-reference.com/players/o/okurme01.html
4: http://www.basketball-reference.com/players/m/maxieja01.html	4: http://www.rotoworld.com/player/nba/800/mehmet-okur
5: http://www.cbssports.com/nba/players/playerpage/555965/jason-maxiel	ll 5: http://www.cbssports.com/nba/players/playerpage/240303/mehmet-okur

Upper rankings([↑]) are more relevant.

Equal.

Lower rankings(1) are more relevant.

Lower 1(jason maxiell)	Lower 2(mehmet okur)
1: http://en.wikipedia.org/wiki/Jason_Maxiell	1: http://en.wikipedia.org/wiki/Mehmet_Okur
2: http://espn.go.com/nba/player/_/id/2775/jason-maxiell	2: http://espn.go.com/nba/player/_/id/1014/mehmet-okur
3: http://www.basketball-reference.com/players/m/maxieja01.html	3: http://www.basketball-reference.com/players/o/okurme01.html
4: http://www.rotoworld.com/player/nba/1155/jason-maxiell	4: http://www.rotoworld.com/player/nba/800/mehmet-okur
5: http://www.cbssports.com/nba/players/playerpage/555965/jason-maxiell	5: http://www.cbssports.com/nba/players/playerpage/240303/mehmet-okur

ELE DOG

- Any method of NERQ can be applied.
- Here the click-through data and Wikipedia is simply exploited.

Pattern-Type Relevance $P(p \mid t)$

- Exploit click-through data from search engine logs
 - Extract pairwise preference from original rankings and user feedback
- (p_1, p_2) denotes that the pattern p_1 is more relevant than p_2 .

Preference Extraction

• A user searches "Kobe Bryant," and then clicks some web pages.

Then we have: $(p_3, p_1), (p_3, p_4), (p_5, p_1), (p_5, p_4)$

J.-Y. Jiang et al. (NTU & MSR)

ELE SQC

More Details about Preference Extraction

- Consider only the SAT-Clicks
 - satisfied clicks with \geq 30 seconds dwell time [Wang *et al.*, KDD'09]
- Focus on web pages of the first page of search results

Drawback

Biased by popular queries or popular entities

J.-Y. Jiang et al. (NTU & MSR)

Improving Ranking Consistency for Web Search

October 22, 2015 (CIKM) 27 / 27

Preference Aggregation

- aggregate preferences by entities to avoid the popularity bias
- estimate the probability of observing the preference of two patterns
 - (p_1, p_2, w) denotes $P(\text{the pattern } p_1 \text{ is more relevant than } p_2) = w$.

Finally, we have many weighted pairwise preferences for each type.

J.-Y. Jiang et al. (NTU & MSR)

Improving Ranking Consistency for Web Search

October 22, 2015 (CIKM) 27 / 27

Relevance Optimization for $P(p \mid t)$

- A pairwise preference can be treated as a partial constraint.
- Assume $P(p \mid t)$ can be represented by a logistic function:

$$P\left(p_{i} \mid t
ight) = rac{1}{1 + \exp\left(- heta_{i,t}
ight)}$$

• $\theta_{i,t}$ is a parameter for p_i and the type t.

Relevance Optimization for P(p | t) (Cont'd)

Adopt the RankNet cost function to optimize pairwise preference

$$\sum_{e \in E(t)} \sum_{(p_1, p_2, w) \in R_e} w \cdot \log \left(1 + \exp \left(P\left(p_2 \mid t\right) - P\left(p_1 \mid t\right)\right)\right)$$

- R_e is the list of weighted preferences for the entity e.
- $P(p_i | t)$ is the relevance using current parameters $\theta_{i,t}$.
- The gradient descent method is applied for optimization.

- Estimate how much users treat q is a query of the type t.
- Adopt click-through data and Bayesian *m*-estimate smoothing

$$P(t \mid q) = \frac{\sum_{p \in S} P(t \mid p) \cdot Click(p, q) + m \cdot P(t)}{m + \sum_{t \in T(q)} \sum_{p \in S} P(t \mid p) \cdot Click(p, q)}$$

- S is the set containing all patterns.
- P(t) can be computed by normalizing the number of entities.

• $P(t \mid p)$ can be calculated with the Bayes' theorem as follows

$$P(t \mid p) = \frac{P(p \mid t) \cdot P(t)}{P(p)}$$

- $P(p \mid t) P(p \mid t)$ is pattern-type relevance.
- P(p) can be computed by normalizing clicks in logs.

- For multiple parameters, we would like to learn β parameters.
- Use the RankNet cost function for optimization

$$\sum_{q \in Q} \sum_{(u_1, u_2) \in R(q)} \log (1 + \exp (P(u_2 \mid q, i_{u_2}) - P(u_1 \mid q, i_{u_1}))),$$

- R(q) is a set of preferences for URLs from q's click-though data.
- i_u is the ranked position of u in the original search result.

- Supervised Approach
 - Directly apply the ranking consistency into learning to rank
 - Optimize the ranking consistency and cost function at the same time
- Unsupervised Approach
 - Consider the ranking consistency while calculating retrieval functions
 - Not only compute simple measures, but also leverage other queries

Evaluation of Pattern-Type Relevance

- To estimate pattern-type relevance $P(p \mid t)$ is the key of the model.
- Totally 107,531 URL patterns are extracted.
- Collect the top five patterns for each type for evaluation
- Baseline is a frequency-based model by clicked counts.
- Use NDCG@k as the evaluation measure
- Hire two assessors to manually judge collected URL patterns
- Three kinds of relevance scores
 - Relevant and important (Score 5) ESPN.com to athletes
 - Generally relevant (Score 1) Biography.com to athletes
 - Irrelevant (Score 0) IMDb to athletes

Evaluation of Pattern-Type Relevance (Cont'd)

- All collected patterns are annotated by two assessors.
 - 80.76% agreement with 0.65 unweighted kappa coefficient

Measure	Frequency	Our Approach
NDCG@1	0.9607	0.9821 (+2.23%)
NDCG@2	0.7655	0.8145 (+5.87%)
NDCG@3	0.6748	0.7363 (+8.61%)
NDCG@4	0.6267	0.6800 (+8.07%)
NDCG@5	0.5857	0.6450 (+9.69%)

- Our approach significantly outperforms the baseline.
- The baseline is biased by popular entities.