Introduction	RIN: Reformulation Inference Network	Experiments	Conclusions

RIN: Reformulation Inference Network for Context-Aware Query Suggestion

Jyun-Yu Jiang and Wei Wang

University of California, Los Angeles (UCLA)

Oct 23, 2018 (CIKM)

Introduction	RIN: Reformulation Inference Network	Experiments	Conclusions
00000			

Context-Aware Query Suggestion

- Context captures user's search intents.
 - submitted queries
 - click-through information

$$\underbrace{q_1 \rightarrow q_2 \rightarrow \cdots \rightarrow \cdot q_{T-1}}_{context} \rightarrow q_T$$

Previous work statistically models query dependencies and similarity.

Query Session	Click-through Data
 query dependencies 	 relevant queries
 query similarity 	• query clusters
 personal history 	 clicked webpages

However, a user may have some behaviors to reformulate their queries.

J.-Y. Jiang and W. Wang (UCLA) Reformulation Inference Network for Query Suggestion Oct 23, 2018 (CIKM) 1 / 21

Introduction	RIN: Reformulation Inference Network	Experiments	Conclusions
00000			

Context-Aware Query Suggestion

- Context captures user's search intents.
 - submitted queries
 - click-through information

$$\underbrace{q_1 \rightarrow q_2 \rightarrow \cdots \rightarrow \cdot q_{T-1}}_{context} \rightarrow q_T$$

1 / 21

Previous work statistically models query dependencies and similarity.

Query Session	Click-through Data
 query dependencies 	 relevant queries
 query similarity 	• query clusters
 personal history 	 clicked webpages

However, a user may have some behaviors to reformulate their queries.

Introduction	RIN: Reformulation Inference Network	Experiments	Conclusions
0●0000		000000	O
User Reform	ulation Behavior		

Syntactic Relations – Simple to Analyze

- Syntactic and explicit changes between queries
 - Such as adding terms, removing terms, acronym expansion.
- Clear definitions of reformulation types.

Semantic Relations – Difficult to Analyze

- specialization: narrow the search constraints, e.g., computer ightarrow mac
- generalization: relax the search constraints, e.g., lion \rightarrow animal

Introduction	RIN: Reformulation Inference Network	Experiments	Conclusions
00000		000000	O
User Refor	mulation Behavior		

Syntactic Relations – Simple to Analyze

- Syntactic and explicit changes between queries
 - Such as adding terms, removing terms, acronym expansion.
- Clear definitions of reformulation types.

Semantic Relations – Difficult to Analyze

- specialization: narrow the search constraints, e.g., computer ightarrow mac
- \circ generalization: relax the search constraints, e.g., lion ightarrow animal

Introduction	RIN: Reformulation Inference Network	Experiments	Conclusions
00000		000000	O
User Refor	mulation Behavior		

Syntactic Relations – Simple to Analyze

- Syntactic and explicit changes between queries
 - Such as adding terms, removing terms, acronym expansion.
- Clear definitions of reformulation types.

Semantic Relations – Difficult to Analyze

- specialization: narrow the search constraints, e.g., computer \rightarrow mac
- generalization: relax the search constraints, e.g., lion \rightarrow animal

Introduction	RIN: Reformulation Inference Network	Experiments	Conclusions
000000		000000	O
User Refor	mulation Behavior		

Syntactic Relations – Simple to Analyze

- Syntactic and explicit changes between queries
 - Such as adding terms, removing terms, acronym expansion.
- Clear definitions of reformulation types.

Semantic Relations – Difficult to Analyze

- specialization: narrow the search constraints, e.g., computer \rightarrow mac
- generalization: relax the search constraints, e.g., lion \rightarrow animal

Introduction	RIN: Reformulation Inference Network	Experiments	Conclusion
000000			

Approximated Semantic Relations from Syntactic Relations

Assumption of Semantic Relations [SIGIR'14]

- Specialization
 - Narrow the search constraints
 - More terms are required to describe the intents (constraints).
- Generalization:
 - Relax the search constraints
 - Terms (constraints) can be removed.

• The syntactic analysis is supposed help us learn semantic relations.

However, existing approaches based on the above may be fragile.

Introduction	RIN: Reformulation Inference Network	Experiments	Conclusions
00000			

Approximated Semantic Relations from Syntactic Relations

Assumption of Semantic Relations [SIGIR'14]

- Specialization
 - Narrow the search constraints
 - More terms are required to describe the intents (constraints).
- Generalization:
 - Relax the search constraints
 - Terms (constraints) can be removed.
- The syntactic analysis is supposed help us learn semantic relations.

However, existing approaches based on the above may be fragile.

Syntactic features can be discrete and hard to be defined

Table	Table 2: Defined reformulation behavior and the formulas for calculating reformulation features.			
Category	Feature Class	Description	Formulas	
		number of terms	$ \cup_{i=1}^T S(q_i) $, $ S(q_{T-1})\cup S(q_T) $	
		term keeping	$ \cap_{i=1}^{T} S(q_i) \ , \ S(q_{T-1}) \cap S(q_T) , \ { m sgn}(S(q_{T-1}) \cap S(q_T))$	
	Term Combination	term adding	$ S(q_T) - S(q_{T-1}) $, sgn $(S(q_T) - S(q_{T-1}))$	
Term	(16 features)	term removing	$ S(q_{T-1}) - S(q_T) $, sgn $(S(q_{T-1}) - S(q_T))$	
	(10 1010100)	number of used terms	$ S_{ m used}(q_T) $, $ S(q_T) - S_{ m used}(q_T) $	
		ratio of used terms	$ S_{used}(q_T) / S(q_T) $, $1 - S_{used}(q_T) / S(q_T) $	
		number of repeat times	$\operatorname{Rep}(q_T), \operatorname{Rep}(q_T)/T$, $\operatorname{Rep}(q_T)/ S(q_T) $	
		cosine similarity	$ ext{sim}_{\cos}(q_{T-1},q_T)$	
		average cosine similarity	$\frac{1}{T-1}\sum_{i=1}^{T-1} sim_{cos}(q_i, q_{i+1}))$, $\frac{1}{T-1}\sum_{i=1}^{T-1} sim_{cos}(q_i, q_T))$	
		trends of cosine similarity	$sim_{cos}(q_{T-1}, q_T) / \frac{1}{T-2} \sum_{i=1}^{T-2} sim_{cos}(q_i, q_{i+1}))$	
	Query Similarity		$sim_{cos}(q_{T-1}, q_T) / \frac{1}{T-2} \sum_{i=1}^{T-2} sim_{cos}(q_i, q_T))$	
	(10 features)	Lev. similarity	$sim_{Lev}(q_{T-1}, q_T)$	
		average Lev. similarity	$\frac{1}{T-1}\sum_{i=1}^{T-1} sim_{Lev}(q_i, q_{i+1}))$, $\frac{1}{T-1}\sum_{i=1}^{T-1} sim_{Lev}(q_i, q_T))$	
Query		trends of Lev. similarity	$\sin_{\text{Lev}}(q_{T-1}, q_T) / \frac{1}{T-2} \sum_{i=1}^{T-2} \sin_{\text{Lev}}(q_i, q_{i+1}))$	
			$sim_{Lev}(q_{T-1}, q_T) / \frac{1}{T-2} \sum_{i=1}^{T-2} sim_{Lev}(q_i, q_T))$	
	Owner Loweth	number of terms	$ S(q_T) $	
	Query Length (6 features)	average number of terms	$\frac{1}{T-1}\sum_{i=1}^{T-1} S(q_i) $, $\frac{1}{T}\sum_{i=1}^{T} S(q_i) $, $ S(q_{T-1}) + S(q_T) $	
	(o reactives)	trends of term number	$ S(q_T) / \frac{1}{T-1} \sum_{i=1}^{T-1} S(q_i) $, $ S(q_{T-1}) - S(q_T) $	
	Query Frequency	pairwise frequency	$P((q_{T-1}, q_T) q_T), P((q_{T-1}, q_T) q_{T-1})$	
	(2 features)		(()= -/1-/11-// (()= -/1-/11/	
	Click-through Data	previous clicks	c_{T-1} , sgn (c_{T-1})	
	(6 features)	number of effective terms	$ C_{\text{eff}}(q_T) $	
		ratio of effective terms	$ C_{\text{eff}}(q_T) /T$, $ C_{\text{eff}}(q_T) / S(q_T) $, $ C_{\text{eff}}(q_T) / S_{\text{used}}(q_T) $	
Session	Time Duration	average time duration	$\frac{1}{T-1}\sum_{i=1}^{T-1} (t_{i+1} - t_i)$	
	(2 features)	trends of time duration	$(t_T - t_{T-1}) / \frac{1}{T-2} \sum_{i=1}^{T-2} (t_{i+1} - t_i)$	
	Position Number (1 feature)	position in the session	(T)	
	(1 leature)			

Figure: The table of features in the SIGIR'14 paper.

J.-Y. Jiang and W. Wang (UCLA) Reformulation Inference Network for Query Suggestion

Introduction	RIN: Reformulation Inference Network	Experiments	Conclusions
000000			

Contradictory Semantics Relations

- Contradictions in the analysis of previous studies.
- 15.8% to 17.5% of consecutive queries contradict the assumption.

Relation	% in	Avg.	Med.	Change of	% in	Example	
	Log	Pos.	Pos.	Term Number	Relation	· · ·	
				Increase	84.2%	camera o digital camera	
Specialization	27.7%	2.9951	2	Decrease	3.7%	perennial plants $ ightarrow$ stonecrop	
				Equal	12.1%	guest book for party \rightarrow anniversary party guest book	
				Increase	4.0%	airport parking newark $ ightarrow$ airport parking new york	
Generalization	12.2%	3.3122	3	Decrease	82.5%	great lakes auto $ ightarrow$ great lakes	
				Equal	13.5%	honda blue book $ ightarrow$ car blue book	

We need robust representations for modeling semantic reformulations.

Introduction	RIN: Reformulation Inference Network	Experiments	Conclusions
000000			

Contradictory Semantics Relations

- Contradictions in the analysis of previous studies.
- 15.8% to 17.5% of consecutive queries contradict the assumption.

Relation	% in	Avg.	Med.	Change of	% in	Example	
	Log	Pos.	Pos.	Term Number	Relation	· · ·	
				Increase	84.2%	camera o digital camera	
Specialization	27.7%	2.9951	2	Decrease	3.7%	perennial plants $ ightarrow$ stonecrop	
				Equal	12.1%	guest book for party \rightarrow anniversary party guest book	
				Increase	4.0%	airport parking newark $ ightarrow$ airport parking new york	
Generalization	12.2%	3.3122	3	Decrease	82.5%	great lakes auto $ ightarrow$ great lakes	
				Equal	13.5%	honda blue book $ ightarrow$ car blue book	

We need robust representations for modeling semantic reformulations.

Introduction	RIN: Reformulation Inference Network	Experiments	Conclusions
00000		000000	O
Problem Sta	tement		

Suppose the user intends to submit a query q_{L+1} after the search context (q₁, q₂, · · · , q_L), we have two goals of query suggestion.

Discriminative Query Suggestion

- Given a set of candidate queries Q_{can} .
- Rank candidates $q_{can} \in Q_{can}$ so that q_{L+1} ranks as high as possible.

Generative Query Suggestion

• Generate a query q'_{L+1} expected to be as similar as possible to q_{L+1} .

Introduction	RIN: Reformulation Inference Network	Experiments	Conclusions
00000		000000	O
Problem Stat	tement		

Suppose the user intends to submit a query q_{L+1} after the search context (q₁, q₂, · · · , q_L), we have two goals of query suggestion.

Discriminative Query Suggestion

- Given a set of candidate queries Q_{can}.
- Rank candidates $q_{can} \in Q_{can}$ so that q_{L+1} ranks as high as possible.

Generative Query Suggestion

• Generate a query q'_{L+1} expected to be as similar as possible to q_{L+1} .

Introduction	RIN: Reformulation Inference Network	Experiments	Conclusions
00000		000000	O
Problem Sta	tement		

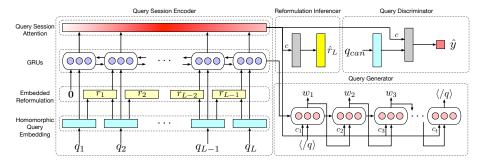
Suppose the user intends to submit a query q_{L+1} after the search context (q₁, q₂, · · · , q_L), we have two goals of query suggestion.

Discriminative Query Suggestion

- Given a set of candidate queries Q_{can}.
- Rank candidates $q_{can} \in Q_{can}$ so that q_{L+1} ranks as high as possible.

Generative Query Suggestion

• Generate a query q'_{L+1} expected to be as similar as possible to q_{L+1} .



(日) (同) (三) (三)

7 / 21

11	unhia Owarry Englanding		
	0000000		
Introduction	RIN: Reformulation Inference Network	Experiments	Conclusions

Homomorphic Query Embedding

- Suppose every term t has a representative embedding v_t.
- The homomorphic embedding of a query q is defined as

$$oldsymbol{v}_q = \sum_{t \in \mathcal{T}(q)} oldsymbol{v}_t$$

• The reformulation r_i from q_i to q_{i+1} can be represented as

$$oldsymbol{v}_{q_{i+1}} - oldsymbol{v}_{q_i}$$

Introduction	RIN: Reformulation Inference Network	Experiments	Conclusions
000000		000000	O
Homomorphi	c query embedding is ben	eficial.	

- The syntactic relations are homomorphically preserved.
 - e.g., $v_{\text{Tokyo hotel}} v_{\text{Japan hotel}} = + v_{\text{Tokyo}} v_{\text{Japan}}$
- The latent space of embeddings implicitly captures query semantics.
 - Queries with similar semantics are also close in the space.
- The embeddings have linear substructures.
 - Helpful to understand the semantic relations between reformulations.
 - High interpretability for reformulation embeddings.

Introduction	RIN: Reformulation Inference Network	Experiments	Conclusions
000000		000000	O
Homomorph	nic query embedding is b	eneficial.	

• The syntactic relations are homomorphically preserved.

• e.g., $\mathbf{v}_{\text{Tokyo hotel}} - \mathbf{v}_{\text{Japan hotel}} = + \mathbf{v}_{\text{Tokyo}} - \mathbf{v}_{\text{Japan}}$

• The latent space of embeddings implicitly captures query semantics.

- Queries with similar semantics are also close in the space.
- The embeddings have linear substructures.
 - Helpful to understand the semantic relations between reformulations.
 - High interpretability for reformulation embeddings.

Introduction	RIN: Reformulation Inference Network	Experiments	Conclusions
000000		000000	O
Homomorphi	c query embedding is be	eneficial.	

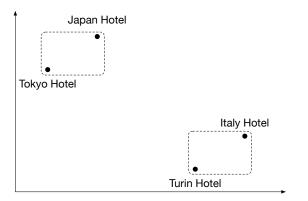
- The syntactic relations are homomorphically preserved.
 - e.g., $v_{\text{Tokyo hotel}} v_{\text{Japan hotel}} = + v_{\text{Tokyo}} v_{\text{Japan}}$
- The latent space of embeddings implicitly captures query semantics.
 - Queries with similar semantics are also close in the space.
- The embeddings have linear substructures.
 - Helpful to understand the semantic relations between reformulations.
 - High interpretability for reformulation embeddings.

Introduction	RIN: Reformulation Inference Network	Experiments	Conclusions
000000		000000	O
Homomorphi	c query embedding is be	eneficial.	

- The syntactic relations are homomorphically preserved.
 - e.g., $\mathbf{v}_{\text{Tokyo hotel}} \mathbf{v}_{\text{Japan hotel}} = + \mathbf{v}_{\text{Tokyo}} \mathbf{v}_{\text{Japan}}$
- The latent space of embeddings implicitly captures query semantics.
 - Queries with similar semantics are also close in the space.
- The embeddings have linear substructures.
 - Helpful to understand the semantic relations between reformulations.
 - High interpretability for reformulation embeddings.

 Introduction
 RIN: Reformulation Inference Network
 Experiments
 Conclusions

 Semantic Homomorphic Embeddings

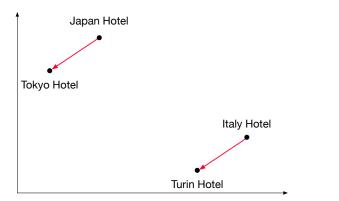


Queries with similar semantics are close in the space.

J.-Y. Jiang and W. Wang (UCLA) Reformulation Inference Network for Query Suggestion Oct 23, 2018 (CIKM) 10 / 21

 Introduction
 RIN: Reformulation Inference Network
 Experiments
 Conclusions

 Semantic Homomorphic Embeddings

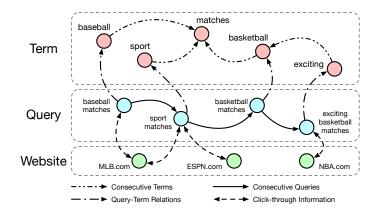


The linear substructures reveal the semantics of reformulations.

J.-Y. Jiang and W. Wang (UCLA) Reformulation Inference Network for Query Suggestion Oct 23, 2018 (CIKM) 10 / 21

Introduction	RIN: Reformulation Inference Network	Experiments	Conclusions
	0000000		

Learning Term Embeddings with Heterogeneous Networks



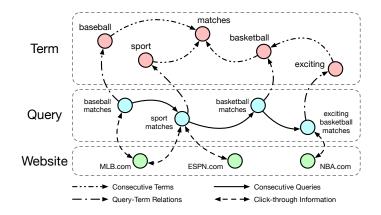
Here node2vec is applied to derive term embeddings.

11 / 21

J.-Y. Jiang and W. Wang (UCLA) Reformulation Inference Network for Query Suggestion Oct 23, 2018 (CIKM)

Introduction	RIN: Reformulation Inference Network	Experiments	Conclusions
	0000000		

Learning Term Embeddings with Heterogeneous Networks



Here node2vec is applied to derive term embeddings.

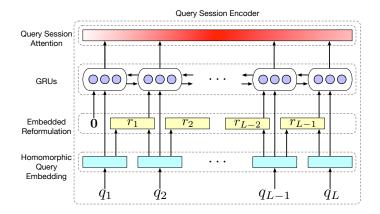
< 🗗 🕨

J.-Y. Jiang and W. Wang (UCLA) Reformulation Inference Network for Query Suggestion Oct 23, 2018 (CIKM) 11 / 21

 Introduction
 RIN: Reformulation Inference Network
 Experiments
 Conclusions

 000000
 0000000
 000000
 0

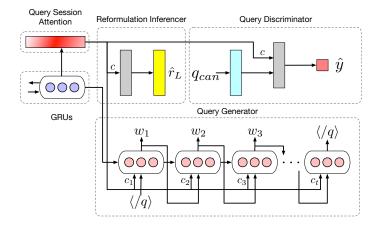
Attention-based Query Session Encoder with a RNN



 Introduction
 RIN: Reformulation Inference Network
 Experiments
 Cc

 000000
 000000●0
 000000
 0

Three Tasks in Reformulation Inference Network



(日) (同) (三) (三)

Introduction	RIN: Reformulation Inference Network	Experiments	Conclusions
000000		000000	O
Multi-task l	Learning		

- Reformulation Inferencer
 - Minimize distances as a regression problem.

$$\mathsf{loss}_R = \frac{1}{2} ||\mathbf{r}_{\boldsymbol{L}} - \hat{\mathbf{r}}_{\boldsymbol{L}}||_F^2$$

- Query Discriminator
 - Discriminate queries as a classification problem.

$$\mathsf{loss}_D = -\left(y \, \mathsf{log}(\hat{y}) + (1-y) \, \mathsf{log}(1-\hat{y})\right)$$

- Query Generator
 - Generate term sequences as a generation problem.

$$\operatorname{oss}_{G} = -\sum_{w} \log P(w_t \mid S_t)$$

- Final Objectives: $loss = loss_R + loss_{task}$
 - $loss_{task}$ could be $loss_D$, $loss_G$, or $loss_D + loss_G$

Introduction	RIN: Reformulation Inference Network	Experiments	Conclusions
000000	0000000●	000000	0
Multi-task	Learning		

- Reformulation Inferencer
 - Minimize distances as a regression problem.

$$\mathsf{loss}_R = \frac{1}{2} ||\boldsymbol{r_L} - \hat{\boldsymbol{r_L}}||_F^2$$

- Query Discriminator
 - Discriminate queries as a classification problem.

$$\mathsf{loss}_D = -\left(y \log(\hat{y}) + (1-y) \log(1-\hat{y})\right)$$

- Query Generator
 - Generate term sequences as a generation problem.

$$\operatorname{oss}_{G} = -\sum_{w_{t}} \log P(w_{t} \mid S_{t})$$

- Final Objectives: $loss = loss_R + loss_{task}$
 - $loss_{task}$ could be $loss_D$, $loss_G$, or $loss_D + loss_G$

Introduction	RIN: Reformulation Inference Network	Experiments	Conclusions
000000		000000	O
Multi-task I	Learning		

- Reformulation Inferencer
 - Minimize distances as a regression problem.

$$\mathsf{loss}_R = \frac{1}{2} ||\boldsymbol{r_L} - \hat{\boldsymbol{r_L}}||_F^2$$

- Query Discriminator
 - Discriminate queries as a classification problem.

$$\mathsf{loss}_D = -\left(y \log(\hat{y}) + (1-y) \log(1-\hat{y})\right)$$

• Generate term sequences as a generation problem.

$$oss_G = -\sum_{w_t} \log P(w_t \mid S_t)$$

- Final Objectives: $loss = loss_R + loss_{task}$
 - $loss_{task}$ could be $loss_D$, $loss_G$, or $loss_D + loss_G$

Introduction	RIN: Reformulation Inference Network	Experiments	Conclusions
000000	0000000●	000000	0
Multi-task	Learning		

- Reformulation Inferencer
 - Minimize distances as a regression problem.

$$\mathsf{loss}_R = \frac{1}{2} ||\boldsymbol{r_L} - \hat{\boldsymbol{r_L}}||_F^2$$

- Query Discriminator
 - Discriminate queries as a classification problem.

$$\mathsf{loss}_D = -\left(y \, \mathsf{log}(\hat{y}) + (1-y) \, \mathsf{log}(1-\hat{y})\right)$$

- Query Generator
 - Generate term sequences as a generation problem.

$$\mathsf{loss}_G = -\sum_{w_t} \mathsf{log} \, P(w_t \mid S_t)$$

- Final Objectives: $loss = loss_R + loss_{task}$
 - $loss_{task}$ could be $loss_D$, $loss_G$, or $loss_D + loss_G$

Introduction	RIN: Reformulation Inference Network	Experiments	Conclusions
000000	0000000●	000000	0
Multi-task	Learning		

- Reformulation Inferencer
 - Minimize distances as a regression problem.

$$\mathsf{loss}_R = \frac{1}{2} ||\boldsymbol{r_L} - \hat{\boldsymbol{r_L}}||_F^2$$

- Query Discriminator
 - Discriminate queries as a classification problem.

$$\mathsf{loss}_D = -\left(y \, \mathsf{log}(\hat{y}) + (1-y) \, \mathsf{log}(1-\hat{y})\right)$$

- Query Generator
 - Generate term sequences as a generation problem.

$$\mathsf{loss}_G = -\sum_{w_t} \mathsf{log} P(w_t \mid S_t)$$

- Final Objectives: $loss = loss_R + loss_{task}$
 - $loss_{task}$ could be $loss_D$, $loss_G$, or $loss_D + loss_G$

Introduction	RIN: Reformulation Inference Network	Experiments	Conclusions
000000		●00000	O
Experimental	Settings		

- 3-month AOL search engine logs
 - 2 months for training, and 1 month for testing.
 - Randomly sample 10% of training data for validation.
- Evaluate Metrics
 - Discriminative Task: mean reciprocal rank (MRR).
 - Generative Task: position independent word error rate (PER).

	Context Length			
Dataset	Short	Medium	Long	
	(1 query)	(2-3 queries)	(4+ queries $)$	
Training	852,350	386,970	118,180	
Testing	403,772	184,843	58,944	

Introduction	RIN: Reformulation Inference Network	Experiments	Conclusions
000000		0●0000	O
Seven Con	npetitive Baselines		

- Dependency-based Baseline Methods
 - Most Popular Suggestion (MPS)
 - Query-based Variable Markov Model (QVMM) [ICDE'09]
- Similarity-based Baseline Method
 - Hybrid Completion (HYB) [WWW'11]
- Feature-based Baseline Methods
 - Personalized Completion (PC) [SIGIR'13]
 - Reformulation-based Syntactic Features (RC) [SIGIR'14]
- Deep Learning Baseline Methods
 - Hierarchical Recurrent Encoder-Decoder (HRED) [CIKM'15]
 - Seq2Seq with Copiers (ACG) [CIKM'17]

Introduction 000000 RIN: Reformulation Inference Network

Experiments 000000

Conclusions 0

Discriminative Query Suggestion (MRR)

Dataset	MPS	Hybrid	PC	QVMM
Overall Context	0.5471	0.5823	0.5150	0.5671
Short Context	0.5680	0.5822	0.5343	0.5862
Medium Context	0.5167	0.5841	0.4865	0.5338
Long Context	0.4826	0.5768	0.4575	0.5026
Dataset	RC	HRED	ACG	RIN
Overall Context	0.6202	0.6207	0.6559	0.8254
Short Context	0.5960	0.6100	0.6471	0.8361
Medium Context	0.6689	0.6489	0.6542	0.8190
Long Context	0.6704	0.6122	0.6669	0.7611

Introduction 000000 RIN: Reformulation Inference Network

Experiments 000●00 Conclusions 0

Generative Query Suggestion (PER)

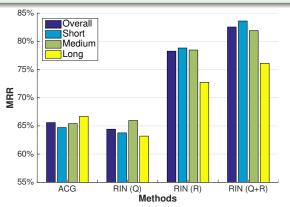
Only two baseline methods are capable for generative query suggestion.

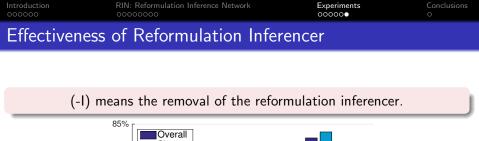
Dataset	HRED	ACG	RIN
Overall	0.8069	0.6925	0.6612
Short	0.8179	0.7015	0.6851
Medium	0.8338	0.6733	0.6197
Long	0.6753	0.6673	0.6115

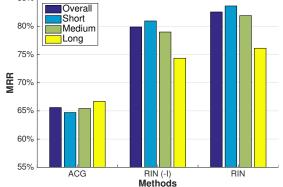
J.-Y. Jiang and W. Wang (UCLA) Reformulation Inference Network for Query Suggestion Oct 23, 2018 (CIKM) 18 / 21

Introduction	RIN: Reformulation Inference Network	Experiments	Conclusions
000000		0000€0	O
Effectiveness	of Reformulation Embe	eddings	

 ${\sf Q}$ and ${\sf R}$ represent query and reformulation embeddings used in RIN.







<u>2</u>0 / 21

Conclusion		000000	•
Introduction	RIN: Reformulation Inference Network	Experiments	Conclusions

- Proposed RIN to model reformulation behaviors for query suggestion.
- Homomorphic query embedding provides flexible reformulation embeddings.
- An attention-based RNN encodes sessions with homomorphic embeddings.
- Jointly optimized tasks and reformulation inferencer for better suggestions.
- Outperformed seven competitive baselines in extensive experiments.
- See our paper for more detailed parameter sensitivity experiments.
- Thank the SIGIR travel grant for the great support!

• Proposed RIN to model reformulation behaviors for query suggestion.

- Homomorphic query embedding provides flexible reformulation embeddings.
- An attention-based RNN encodes sessions with homomorphic embeddings.
- Jointly optimized tasks and reformulation inferencer for better suggestions.
- Outperformed seven competitive baselines in extensive experiments.
- See our paper for more detailed parameter sensitivity experiments.
- Thank the SIGIR travel grant for the great support!

Introduction	RIN: Reformulation Inference Network	Experiments	Conclusions
000000		000000	●
Conclusions			

- Proposed RIN to model reformulation behaviors for query suggestion.
- Homomorphic query embedding provides flexible reformulation embeddings.
- An attention-based RNN encodes sessions with homomorphic embeddings.
- Jointly optimized tasks and reformulation inferencer for better suggestions.
- Outperformed seven competitive baselines in extensive experiments.
- See our paper for more detailed parameter sensitivity experiments.
- Thank the SIGIR travel grant for the great support!

Conclusions			
Introduction 000000	RIN: Reformulation Inference Network	Experiments 000000	Conclusions

- Proposed RIN to model reformulation behaviors for query suggestion.
- Homomorphic query embedding provides flexible reformulation embeddings.
- An attention-based RNN encodes sessions with homomorphic embeddings.
- Jointly optimized tasks and reformulation inferencer for better suggestions.
- Outperformed seven competitive baselines in extensive experiments.
- See our paper for more detailed parameter sensitivity experiments.
- Thank the SIGIR travel grant for the great support!

Introduction	RIN: Reformulation Inference Network	Experiments	Conclusions
000000		000000	•
Conclusions			

- Proposed RIN to model reformulation behaviors for query suggestion.
- Homomorphic query embedding provides flexible reformulation embeddings.
- An attention-based RNN encodes sessions with homomorphic embeddings.
- Jointly optimized tasks and reformulation inferencer for better suggestions.
- Outperformed seven competitive baselines in extensive experiments.
- See our paper for more detailed parameter sensitivity experiments.
- Thank the SIGIR travel grant for the great support!

Introduction	RIN: Reformulation Inference Network	Experiments	Conclusions
000000		000000	•
Conclusions			

- Proposed RIN to model reformulation behaviors for query suggestion.
- Homomorphic query embedding provides flexible reformulation embeddings.
- An attention-based RNN encodes sessions with homomorphic embeddings.
- Jointly optimized tasks and reformulation inferencer for better suggestions.
- Outperformed seven competitive baselines in extensive experiments.
- See our paper for more detailed parameter sensitivity experiments.
- Thank the SIGIR travel grant for the great support!

Introduction	RIN: Reformulation Inference Network	Experiments	Conclusions
000000		000000	•
Conclusions			

- Proposed RIN to model reformulation behaviors for query suggestion.
- Homomorphic query embedding provides flexible reformulation embeddings.
- An attention-based RNN encodes sessions with homomorphic embeddings.
- Jointly optimized tasks and reformulation inferencer for better suggestions.
- Outperformed seven competitive baselines in extensive experiments.
- See our paper for more detailed parameter sensitivity experiments.
- Thank the SIGIR travel grant for the great support!

000000	0000000	Experiments 000000	•
Conclusions			

- Proposed RIN to model reformulation behaviors for query suggestion.
- Homomorphic query embedding provides flexible reformulation embeddings.
- An attention-based RNN encodes sessions with homomorphic embeddings.
- Jointly optimized tasks and reformulation inferencer for better suggestions.
- Outperformed seven competitive baselines in extensive experiments.
- See our paper for more detailed parameter sensitivity experiments.
- Thank the SIGIR travel grant for the great support!

000000	0000000	Experiments 000000	•
Conclusions			

- Proposed RIN to model reformulation behaviors for query suggestion.
- Homomorphic query embedding provides flexible reformulation embeddings.
- An attention-based RNN encodes sessions with homomorphic embeddings.
- Jointly optimized tasks and reformulation inferencer for better suggestions.
- Outperformed seven competitive baselines in extensive experiments.
- See our paper for more detailed parameter sensitivity experiments.
- Thank the SIGIR travel grant for the great support!