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ABSTRACT
Information networks, such as social and citation networks, are
ubiquitous in the real world so that network analysis plays an im-
portant role in data mining and knowledge discovery. To alleviate
the sparsity problem of network analysis, it is common to capture
the network semantics by projecting nodes onto a vector space
as network embeddings. Moreover, random walks are usually ex-
ploited to efficiently learn node embeddings and preserve network
proximity. In addition to proximity structure, heterogeneous net-
works have more knowledge about the types of nodes. However,
to profit from heterogeneous knowledge, most of the existing ap-
proaches guide the randomwalks through predefinedmeta-paths or
specific strategies, which can distort the understanding of network
structures. Furthermore, traditional randomwalk-based approaches
much favor the nodes with higher degrees while other nodes are
equivalently important for the downstream applications. In this
paper, we propose Meta-context Aware Random Walks (MARU)
to overcome these challenges, thereby learning richer and more
unbiased representations for heterogeneous networks. To reduce
the bias in classical random walks, the algorithm of bidirectional
extended random walks is introduced to improve the fairness of
representation learning. Based on the enhanced random walks, the
meta-context aware skip-gram model is then presented to learn ro-
bust network embeddings with dynamic meta-contexts. Therefore,
MARU can not only fairly understand the overall network struc-
tures but also leverage the sophisticated heterogeneous knowledge
in the networks. Extensive experiments have been conducted on
three real-world large-scale publicly available datasets. The experi-
mental results demonstrate that MARU significantly outperforms
state-of-the-art heterogeneous network embedding methods across
three general machine learning tasks, including multi-label node
classification, node clustering, and link prediction.
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1 INTRODUCTION
Network analysis has already been a prevalent research topic be-
cause of its enormous potential in many downstream applications,
such as node classification [33], node clustering [22], and link pre-
diction [20]. More specifically, most of the important tasks in net-
work analysis involve predictions over nodes and edges. However,
the sparsity of networks usually results in significant difficulty of
generalization for machine learning models. To resolve this issue,
one of the most popular approaches is to map nodes to continuous
low-dimensional representations as embeddings that preserve the
structural information and semantics of nodes [2].

To efficiently learn node representations, random walks have
been widely exploited to preserve the proximity between node
pairs [14, 24]. More precisely, the embedded representations of
nodes are optimized to infer the nearby nodes on randomwalks [24]
with a skip-gram model [21] inspired by word embedding in the
field of natural language processing [21]. Moreover, the complicated
proximity structures of networks can be also gained by sampling
biased random walks [14]. Practically, each of the generated ran-
dom walks can be treated as a word sequence so that the task of
network embedding is equivalent to the setting of word embed-
ding [9, 14, 18, 24]. More specifically, a sliding window is applied
to capture the nearby nodes as the context for each node over
random walks. To ensure the coverage of the nodes for learning
representations, most of the existing approaches simply sample
a few random walks starting from each of the nodes. However,
there are a few shortcomings for the existing sampling approaches.
First, one-directional random walks that evenly start from all of
the nodes would favor nodes with higher degree and betweenness
scores when nodes in the network should be equally important for
the downstream applications. Second, tail nodes tend to be visited
at the very beginning of random walks, especially for the random
walks starting from them. As a result, the number of context nodes
in the sliding window will be much underestimated for the tail
nodes. In addition, the tail nodes will have fewer chances to be
observed as the context of other nodes during optimization.

Compared to homogeneous networks with a singular type of
node, heterogeneous networks with various types of nodes are more
common in real-world applications. Although the homogeneous
network embedding methods can still learn the representations for
heterogeneous networks, the information of node types can be sig-
nificantly neglected. As a result, the semantics of the heterogeneous
knowledge in networks is totally lost in the embeddings. To lever-
age the heterogeneous knowledge in networks for representation
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learning, existing methods usually rely on meta-paths [29], which
are predefined sequences of node types. In other words, different
meta-paths indicate distinct human-explainable semantics. For ex-
ample, the meta-paths APA and APVPA are used to indicate that two
authors had co-authorship and published papers in the same venue
respectively, where A, P, and V are the node types referring to author,
paper, and venue in a heterogeneous bibliographic network. To ex-
ploit the meta-paths, most of the existing heterogeneous network
embedding methods guide the generated random walks through
a predefined set of meta-paths so that the prior knowledge can
be incorporated into the produced node sequences [6, 9, 11, 27].
For instance, each meta-path can be solely applied to measure the
relationship between two nodes with a short random walk [11, 27];
different meta-paths may also overlap to approximate longer ran-
dom walks as a mixture of prior knowledge [6, 9]. However, the
choices of random walk significantly affect the quality of network
representations [18]. Accordingly, the requirement of high-quality
meta-paths that are hand-picked by domain experts leads to reduced
robustness for general tasks. In addition, the usage of meta-paths
can limit and distort the understanding of the network structures.
More precisely, given a limited set of meta-paths, a new path in a
network is less likely to be induced. Even though some works [18]
have proposed to employ specific strategies to guide random walks
instead of using meta-paths, adjusted random walks can still be
biased and overlook some vital network structures.

To learn network representations with random walks, one of the
most popular optimized approaches is the skip-grammodel inspired
by word embedding in the field of natural language processing [21].
Each of the generated random walks can be treated as a word
sequence so that the task of network embedding is equivalent to
the setting of word embedding [9, 14, 18, 24]. More specifically, a
sliding window is applied to capture the nearby nodes as the context
for each node over random walks. To ensure the coverage of the
nodes for learning representations, most of the existing approaches
simply sample a few random walks starting from each of the nodes.
However, there are a few shortcomings for the existing sampling
approaches. First, one-directional random walks that evenly start
from all of the nodes would favor nodes with higher degree and
betweenness scores when nodes in the network should be equally
important for the downstream applications. Second, tail nodes tend
to be visited at the very beginning of random walks, especially for
the random walks starting from them. As a result, the number of
context nodes in the sliding window will be much underestimated
for the tail nodes. In addition, the tail nodes will have fewer chances
to be observed as the context of other nodes during optimization.

In this paper, Meta-context Aware Random Walk (MARU) is
proposed to address the limitations of the existing heterogeneous
network embedding approaches. More specifically, we focus on
deriving robust embeddings that are more comprehensive and fair
to represent the heterogeneous networks. The algorithm of bidirec-
tional extended random walks is first introduced to alleviate the
bias caused by classical random walks. Instead of manipulating ran-
dom walks [9, 14, 18], we employ general random walks for a more
comprehensive understanding of network structures and encode
the types of surrounding nodes as meta-contexts to incorporate het-
erogeneous knowledge. Given a node and its meta-contexts in the
random walk, we extend the skip-gram model to infer not only the

nearby nodes but also their corresponding meta-contexts. In other
words, the learned representations can reflect various situations in
terms of different meta-contexts, thereby describing the nature of
heterogeneous networks more precisely. Here, we summarize our
contributions in the following.
• To the best of our knowledge, this paper is the first work to
address the bias of classical random walks for network repre-
sentation learning. For the tail nodes with lower degree and
betweenness scores, the proposed bidirectional extended random
walks can capture the context and optimize the representations
more fairly and comprehensively.

• We propose the framework MARU, generating network represen-
tations that simultaneously capture general network structures
and local heterogeneous knowledge. More specifically, leverag-
ing the types of surrounding nodes as meta-contexts enable the
model to represent different semantics according to local contexts
in random walks. Hence, the learned network representations
are more robust to preserve the properties of heterogeneous
networks.

• Extensive experiments conducted on three large-scale real-world
datasets indicate that MARU significantly outperforms existing
heterogeneous network embedding methods. A study of parame-
ter sensitivity then demonstrates the robustness of the proposed
framework across different situations. In addition, we will release
our implementations to facilitate future research.

2 RELATEDWORK
Networks can be categorized into two types, including homogeneous
and heterogeneous networks. Homogeneous networks contain a
single node type, e.g., social networks of users, whereas heteroge-
neous networks involve multiple types of nodes, such as citation
networks of authors, papers, and venues. Network representation
learning for both categories aims at mapping nodes in graphs to low-
dimensional continuous vectors. These low-dimensional vectors
are learned to capture the essential information of the nodes, and
consequently, better preserve the structure and semantic similarity
among nodes.

A range of network representation learning algorithms has been
proposed for homogeneous network embedding learning [5, 14, 24,
32, 36] and heterogeneous network embedding learning [4, 9, 11, 18,
31]. In this section, we briefly summarize these algorithms below.

2.1 Homogeneous Network Embedding Models
DeepWalk [24] is a pioneering representation learning approach for
homogeneous networks. It explores the network structure through
the random walks sampled from the network. Mapping to the con-
cepts in work2vec [21], nodes and random walks are treated as
words and sentences, respectively. The node representations can
be learned by using the vanilla skip-gram model [21] on the ran-
dom walks. The paradigm of DeepWalk has inspired many stud-
ies [9, 14, 23, 37] that are applied to diverse types of networks.
node2vec [14] is one of the examples that extend DeepWalk by re-
laxing the definition of network neighborhood and designing a
biased random walk procedure to explore more diverse node rep-
resentations. However, previous literature has demonstrated that
such walk generation methods introduce a bias towards the nodes
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with higher degrees [29]. Therefore, the structural and semantic
information of the isolated or less connected nodes becomes dif-
ficult to be captured by the model, which eventually leads to the
inefficiency of the training procedure and poor accuracy of the
trained representations of nodes with lower degree numbers. Most
importantly, the model is prone to preserve only the global struc-
ture [36], assuming that nodes with more common neighbors yield
similar representations.

To better capturing the complicated underlying network struc-
ture, LINE [32] and SDNE [36] use edge-sampling algorithms to
preserve both the local and global network structure. They model
both the first-order proximity, defined as the proximity between
directly connected nodes, and the second-order proximity, defined
as the proximity between nodes that share common neighbors.

All of the aforementioned algorithms are specifically designed for
homogeneous networks. In other words, they fail to take advantage
of the diverse semantic relations encompassed in heterogeneous
networks.

2.2 Heterogeneous Network Embedding
Models

In order to comprehensively capture the rich semantics in edges and
to better understand the different interactions between multi-typed
nodes, heterogeneous information network embedding models are
proposed. These methods either construct the embeddings for each
modality defined beforehand, or learn all node embeddings together
in the same latent space.

Most of the approaches that use predefined modality learn the
node embeddings byminimizing the loss over eachmodality. HNE [4]
presents a deep embedding framework that leverages a highly non-
linear multi-layered embedding function to capture the complex
interactions. Each modality, such as image and text, is constructed
separately. The embeddings of different modalities are then mapped
to the same embedding space. Zhao et al. [38] specifically model the
network structure of Wikipedia data that consists of three types of
nodes: entities, words, and categories. It uses the coordinate matrix
factorization technique to jointly learn the representations of these
three types of nodes. PTE [31] is a semi-supervised representation
learning method designed for text data. Based on the edge types,
it decomposes the heterogeneous network into a set of bipartite
networks. The method learns the embeddings of each node accord-
ing to its one-hop neighbors, i.e. directly connected nodes, of the
resulting bipartite networks. These approaches have demonstrated
satisfactory performance in specific applications. Nevertheless, they
can only capture limited types of relationships between nodes or
miss the different semantics of relationships between nodes.

To address the caveat of explicit node types, several approaches
have been proposed to incorporatemeta-paths, which are sequences
of node types, for heterogeneous graph embeddings. For instance,
metapath2vec [9] is another extension of DeepWalk that uses meta-
paths to capture the relationships between different node types.
More specifically, a strategy for sampling random walks from het-
erogeneous networks is proposed to restrict random walks to fol-
low particularly predefined transitions of node types. However,
the set of meta-paths needs to be predefined while the selection
of meta-paths significantly affects the performance. To avoid the

requirement of meta-paths, Fu et al. [11] propose HIN2Vec to learn
node representations by predicting the meta-paths as relations be-
tween nodes while Hussein et al. [18] manipulate the procedure of
sampling random walks. Nevertheless, HIN2Vec suffers from the
capability of solely inferring contexts of a node while manipulating
randomwalks can lead to significant sampling bias. To address these
problems, MARU does not require predefined meta-paths while the
bidirectional extended random walk algorithm can theoretically
reduce sampling bias. Moreover, any learned node representation
is capable of predicting the contextual information on the network.

3 PROBLEM STATEMENT
In this section, we first introduce the notations of heterogeneous
networks and then formally define the objective of learning hetero-
geneous network representations.

3.1 Heterogeneous Network
We first formally define the notations to represent heterogeneous
networks. Note that the definition is consistent with previous stud-
ies [9, 28, 30].

Definition 3.1 (Heterogeneous Network). A heterogeneous net-
work is defined as a graph 𝐺 = (𝑉 , 𝐸,𝑇 ), where 𝑉 is the set of
nodes; 𝐸 ⊆ 𝑉 ×𝑉 is the set of edges connecting nodes;𝑇 represents
the set of node types. For each node 𝑣 ∈ 𝑉 , a mapping function
𝜓 (𝑣) ∈ 𝑇 indicates the corresponding type of the node.

To simplify the representation and implementation, for each
node 𝑣 , we denote the neighbors in the graph as

𝑁 (𝑣) = {𝑣𝑖 | ∀(𝑣, 𝑣𝑖 ) ∈ 𝐸} ,

which can be treated as an adjacency list [7] generated by the edge
set 𝐸.

3.2 Problem Definition
We formalize the problem of learning heterogeneous network rep-
resentations based on the aforementioned notations.

Problem 1 (Representation Learning for Heterogeneous
Networks). Given a heterogeneous network 𝐺 = (𝑉 , 𝐸,𝑇 ), for each
node 𝑣 ∈ 𝑉 , the task aims to learn a 𝑑-dimensional embedding vector
Φ(𝑣) : 𝑉 → R𝑑 , where 𝑑 ≪ |𝑉 |, so that Φ(𝑣) can capture the
structural information and semantic knowledge of the node.

More specifically, the network representations project nodes
onto a 𝑑-dimensional continuous latent feature space. Note that
although nodes can belong to different types, all of the nodes are
projected on the identical feature space for the convenience of
representing relationships among different nodes. As a result, the
learned node representations can further benefit various data min-
ing tasks for heterogeneous networks, such as node classification,
node clustering, and link prediction. Moreover, heterogeneous net-
work representation learning is an unsupervised machine learning
task. In other words, the representations can be acquired with
only the network and then directly applied to various downstream
applications for heterogeneous network data mining. Therefore,
the problem of heterogeneous network representation learning is
important and beneficial.
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Table 1: Summary of notations and their descriptions.

Notation Descriptions
𝐺 the heterogeneous network for learning representations
𝑉 the set of nodes
𝐸 the set of edges connecting nodes
𝑇 the set of node types

𝜓 (𝑣) the function mapping a node 𝑣 to the corresponding type
𝑁 (𝑣) the set of neighbors of the node 𝑣 in the graph
𝑑 the embedding dimension
𝑙 the walk length for bidirectional extended random walk
𝑘 the neighborhood size in the skip-gram model
𝑤 the number of generated random walks per node
𝑡 the meta-context size
𝑟 the number of negative samples per neighbor
𝑀 the set of available meta-contexts

𝐶 (𝑣,𝑚,𝑚𝑐 ) the context nodes with𝑚𝑐 ∈ 𝑀 for the node 𝑣 with𝑚 ∈ 𝑀

Φ(𝑣,𝑚) the embedding of the node 𝑣 with the meta-context𝑚
Φ(𝑣) the ultimate embedding of the node 𝑣

4 THE MARU FRAMEWORK FOR
HETEROGENEOUS NETWORK EMBEDDING

In this section, we present the proposed framework, Meta-context
Aware RandomWalks (MARU), for learning heterogeneous network
representations.

4.1 Framework Overview
Figure 1 depicts the general schema of MARU. More specifically,
the model mainly consists of four stages, including bidirectional ex-
tended random walks, meta-context aware node embedding, meta-
context aware skip-gram, and embedding inference. To efficiently
and adequately capture the structural information, bidirectional
extended random walks guarantee the generality of sampled struc-
tures and the fairness of context information for each node in
random walks. To properly encode the heterogeneous knowledge,
the stage of meta-context aware node embedding represents a node
with different embedding vectors for distinct meta-contexts, which
are the types of surrounding nodes on random walks. Based on
the meta-context aware embeddings, the meta-context aware skip-
gram model optimizes the representations by inferring not only
the context nodes but also their meta-contexts. Finally, the ultimate
representation of a node can be computed as an aggregation of
meta-context aware embeddings over the estimated distribution of
meta-contexts for the node in the stage of embedding inference. In
sum, Table 1 summarizes the major notations in this paper and the
corresponding descriptions.

4.2 Bidirectional Extended RandomWalks
One of the most efficient approaches of capturing the network
structures is to sample a few random walks that cover the network
and then optimize the proximity between nodes within a sliding
window on the random walks. However, classical random walks
result in significant biases. More precisely, simple random walks
would favor the nodes with high degree and betweenness scores,
especially for the walks with longer lengths [8]. In addition, con-
ventional random walks also lead to the bias of underestimating
the contextual information of tail nodes while learning network
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Figure 1: The schema of the proposed framework Meta-
context Aware RandomWalks (MARU).

Classical Random Walks

Bidirectional Extended Random Walks

Missing Nodes in Sliding Windows

Full Samples of Contexts

Figure 2: The illustrations of classical randomwalks and our
proposed bidirectional extended randomwalks for learning
network representations. The yellow nodes are the starting
nodes of random walks while the white nodes with dotted
strokes are the extended nodes. The lines are the slidingwin-
dows for the corresponding nodes for optimization.

representations. Figure 2 shows how classical random walks are
applied to network representation learning. For the endpoints of
random walks, there can be at most half of nodes that are missing
in the sliding windows for deriving the contexts. Moreover, the
most typical approach to optimize tail nodes is to start a number
of random walks from them. In other words, the contexts for the
tail nodes can be highly underestimated, and thus reveal incorrect
structural information.

To address this problem, we propose the algorithm of bidirec-
tional extended random walks as presented in Algorithm 1. Instead
of walking through only a single direction, the starting node is
treated as the center of the walk that grows from both sides si-
multaneously. Furthermore, to secure the fairness of the observed
contexts, the number of actual walking steps is extended according
to the size of sliding windows in optimization. As shown in Figure 2,
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Algorithm 1: BidirectionalExtendedRandomWalk(𝐺 , 𝑢, 𝑙 ,
𝑘)
Input: the graph 𝐺 , the starting node 𝑢, the walk length 𝑙 ,

the neighborhood size 𝑘
Output: the bidirectional extended random walk 𝐿

1 W = [𝑢]
2 𝑣 𝑓 = 𝑣𝑏 = 𝑢

3 for iter = 1 to ⌈ 𝑙−12 ⌉ + 𝑘 do
4 𝑣 𝑓 = RandomlySample(𝑁 (𝑣 𝑓 )) // forward step.
5 𝑣𝑏 = RandomlySample(𝑁 (𝑣𝑏 )) // backward step.
6 W = [𝑣𝑏 ] +𝑊 + [𝑣 𝑓 ]
7 return W

all of the nodes in the random walks can fairly have full samples of
contexts for optimization. Moreover, bidirectional random walks
can theoretically retrieve more tail nodes than one-directional ran-
dom walks as shown in Corollary 1.

Corollary 1. Assume head nodes are never transitioning to tail
nodes in random walks, and the probability of transitioning between
tail nodes is 0 < 𝑝 < 1. Given a tail starting node 𝑢 and the walking
length 2𝑛 + 1, the expected number of tail nodes in a bidirectional
random walk is greater than the expected number in a one-directional
random walk.

Note that we show the proof of Corollary 1 in Appendix A. As
a result, the algorithm of bidirectional extended random walks
is able to efficiently and fairly capture the structural information
and provide enough knowledge for the optimization of network
representation learning.

4.3 Meta-context Aware Skip-gram Model
To exploit the node types as heterogeneous information, most of
the existing approaches guide the random walk through predefined
meta-paths [9, 11] or specific strategies [18] before optimizing the
proximity between nodes on random walks. However, these manip-
ulations of random walks can distort the understanding of network
structures. More specifically, a portion of network structures can
be ignored or inadequately covered by manipulated random walks.
Hence, we do not guide randomwalks with any external knowledge.
Instead, meta-contexts are taken into account to exploit heteroge-
neous knowledge.
Meta-contexts on RandomWalks. In this paper, meta-contexts
are defined as the node types within a sliding window. The moti-
vation is that a node should have different contexts of nodes for
different local meta-contexts. For example, if the meta-contexts
for the node of an author in a bibliographic network are APAPA,
the corresponding contexts should be the authored papers and the
co-authors instead of the published venues. To some degree, meta-
contexts can be treated as the conditions of the particular segments
in random walks. The idea is beneficial for the model to learn the
dynamic structures in the networks. Formally, given a random walk
as 𝐿 =

[
𝑣1, 𝑣2, · · · , 𝑣 |𝐿 |

]
, the meta-contexts of the node 𝑣𝑖 can be

defined as:

𝑚𝑖 = (𝜓 (𝑣𝑖−𝑡 ) , · · · ,𝜓 (𝑣𝑖 ) , · · · ,𝜓 (𝑣𝑖+𝑡 )) ,

where 𝑡 is the window size for meta-contexts. For simplicity, we
denote𝑀 as the set of all possible meta-contexts that can be found
in the sampled random walks.
Meta-contextAwareNodeEmbedding.To incorporate the knowl-
edge of meta-contexts into the model, we propose the meta-context
aware node embedding, which considers a node with different
meta-contexts separately. More precisely, instead of learning a sta-
tionary representation Φ(𝑣) for a node 𝑣 , the node can have distinct
representations Φ(𝑣,𝑚) for different meta-contexts𝑚 ∈ 𝑀 . Note
that although meta-contexts can be encoded independently with
conditional bits [13] or individual embeddings [34], both of the
methods perform unsatisfactorily in our experiments. This obser-
vation is mainly due to the sophisticated network structures of our
framework. Independently learning representations with different
meta-contexts for a node can better model heterogeneous networks.
Meta-context Aware Skip-gram. Similar to the previous stud-
ies [9, 14, 18, 24], we extend the skip-gram model originally pro-
posed in the field of natural language processing [21] to learn net-
work representations with the concept of meta-contexts. In addition
to the nearby nodes in random walks, we also optimize the like-
lihood of the corresponding meta-contexts for the context nodes.
Given a heterogeneous network 𝐺 = (𝑉 , 𝐸,𝑇 ), the objective of
meta-context aware skip-gram model is to maximize the proximity
between nodes in terms of local structures and meta-contexts as:

argmax
𝜃

∑
𝑣∈𝑉

∑
𝑚∈𝑀

∑
𝑢𝑐 ∈𝐶 (𝑣,𝑚,𝑚𝑐 )

log𝑝 (𝑢𝑐 | 𝑣 ;𝑚;𝑚𝑐 ;𝜃 ),

where 𝜃 is the set of model parameters; 𝑢𝑐 ∈ 𝐶 (𝑣,𝑚,𝑚𝑐 ) denotes
the context nodes 𝑢𝑐 with specific meta-contexts𝑚𝑐 for the node 𝑣
with the meta-contexts𝑚. Different from conventional skip-gram
models that output a single multinomial distribution of all available
nodes, the meta-context aware skip-gram model learns multiple
multinomial distributions for different meta-contexts. More specifi-
cally, as illustrated in Figure 1, the likelihood 𝑝 (𝑢𝑐 | 𝑣 ;𝑚;𝑚𝑐 ;𝜃 ) can
be estimated by the learned meta-context aware node embeddings
and the softmax function [12] as:

𝑝 (𝑢𝑐 | 𝑣 ;𝑚;𝑚𝑐 ;𝜃 ) =
Φ(𝑣,𝑚) · Φ(𝑢𝑐 ,𝑚𝑐 )∑

∀𝑢𝑖 ∈𝑉𝑚𝑐
Φ(𝑣,𝑚) · Φ(𝑢𝑖 ,𝑚𝑐 )

,

where 𝑉𝑚𝑐
is the set of nodes that have been associated with the

meta-context 𝑚𝑐 . During the training process, positive samples
are generated by retrieving neighbors in the random walks with
a length-𝑘 sliding window while a negative sample 𝑢𝑛 can be ran-
domly drawn from the distribution 𝑃 (𝑢𝑛 | 𝑚𝑐 ) for each neighbor.
Therefore, the model can be optimized by using the stochastic gra-
dient descent algorithm [26].
Embedding Inference. To generate the representations of individ-
ual nodes, the ultimate node embeddings can be further computed
by aggregating the meta-context aware node embeddings as:

Φ(𝑣) =
∑
𝑚

𝑃 (𝑚 | 𝑣) · Φ(𝑣,𝑚), and 𝑃 (𝑚 | 𝑣) = #(𝑣,𝑚)∑
𝑚′ #(𝑣,𝑚′) ,

where #(𝑣,𝑚) denotes the number of occurrences for the associa-
tion of the node 𝑣 and the meta-context𝑚 in the training random
walks. Finally, Algorithm 2 gives the pseudocode of the whole meta-
context aware skip-gram model.
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Algorithm 2: MetaContextAwareSkipGram(𝐺 ,𝑤 , 𝑙 , 𝑘 , 𝑡 , 𝑟 ,
𝑀)
Input: the graph 𝐺 = (𝑉 , 𝐸,𝑇 ), the number of walks per

node𝑤 , the walk length 𝑙 , the neighborhood size 𝑘 ,
the meta-context size 𝑡 , the number of negative
samples per neighbor 𝑟 , the set of available
meta-contexts𝑀 .

Output: the node representations Φ(𝑣) : 𝑉 → R𝑑
1 Φmeta = Φnode = ∅
2 for 𝑖𝑡𝑒𝑟_𝑤 = 1 to𝑤 do
3 for 𝑢 ∈ 𝑉 do
4 W = BidirectionalExtendedRandomWalk(𝐺 , 𝑢, 𝑙 , 𝑘)
5 for 𝑖 = 𝑘 + 1 to 𝑘 + 𝑙 do
6 for 𝑗 = 𝑖 − 𝑘 to 𝑖 + 𝑘 & 𝑖 ≠ 𝑗 do
7 Φmeta = SGD(Φmeta, 𝑃 (𝑊𝑗 |𝑊𝑖 ;𝑚𝑖 ;𝑚 𝑗 ;𝜃 ) = 1)
8 for 𝑖𝑡𝑒𝑟_𝑛 = 1 to 𝑟 do
9 Draw a negative sample 𝑢𝑛 ∼ 𝑃 (𝑢𝑛 | 𝑚 𝑗 )

10 Φmeta =
11 SGD(Φmeta, 𝑃 (𝑢𝑛 |𝑊𝑖 ;𝑚𝑖 ;𝑚 𝑗 ;𝜃 ) = 0)

12 for 𝑣 ∈ 𝑉 do
13 Φnode (𝑣) = 0
14 for𝑚 ∈ 𝑀 do
15 Φnode (𝑣) = Φnode (𝑣) + 𝑃 (𝑚 | 𝑣) · Φmeta (𝑣,𝑚)

16 return Φnode

4.4 Complexity Analysis
Here we analyze the complexity of MARU.

For the time complexity, the bidirectional extended random walk
algorithm spends 𝑂 (𝑙 + 𝑘) time to generate each random walk so
that the overall time complexity for random walk generation is
𝑂 (𝑤 |𝑉 | (𝑙 +𝑘)). For each random walk, it costs𝑂 (𝑙𝑘𝑑 log ( |𝑉 | |𝑀 |))
time to update the skip-gram model with negative sampling for
learning meta-context aware node embeddings. Finally, the em-
bedding inference takes 𝑂 ( |𝑉 | |𝑀 |) to derive the ultimate node
embeddings. Therefore, the overall time complexity of MARU is
𝑂 (𝑤𝑙𝑘𝑑 |𝑉 | (log |𝑉 | + log |𝑀 |) + |𝑉 | |𝑀 |).

For the space complexity, randomwalk generation requires𝑂 (𝑙 +
𝑘) space as a buffer for the generated random walks. The meta-
context aware node embeddings and ultimate node embeddings
occupy𝑂 (𝑑 |𝑉 | |𝑀 |) and𝑂 (𝑑 |𝑉 |)memory spacewhile the skip-gram
model has 𝑂 (𝑑 |𝑀 | |𝑉 |) additional parameters. Hence, the overall
space complexity of MARU is 𝑂 (𝑙 + 𝑘 + 𝑑 |𝑀 | |𝑉 |).

5 EXPERIMENTS
In this section, we conduct extensive experiments and in-depth
analysis to verify the quality of learned heterogeneous network
representations and the robustness of MARU in three general ma-
chine learning tasks.

5.1 Datasets and General Experimental Settings
Dataset. In the experiments, we adopt three large-scale publicly
available heterogeneous network datasets, including DBIS [29],

Table 2: The statistics of three experimental datasets of het-
erogeneous networks.

Dataset Node Types and Number of Nodes
DBIS [29] Author (A) Paper (P) Venue (V)

(264,323 edges) 60,694 72,902 464
MovieLens [16] Movie (M) Actor (A) Director (D) User (U)
(1,097,495 edges) 10,197 95,321 4,060 2,113

Yelp [3] User (U) Business (B) Category (C) Location (L)
(411,263 edges) 16,239 14,284 511 47

MovieLens [16], and Yelp [3]. Table 2 further shows the statistics
of three datasets with more details as follows.
• DBIS [29] is a bibliographic network dataset in the field of data-
base and information system. The network consists of papers (P),
authors (A), and venues (V) as nodes while the relationships of
authorship (P-A) and published venues (P-V) are edges.

• MovieLens [16] is a network dataset of a movie recommen-
dation system. The nodes of the network include movies (M),
actors (A), directors (D), and users (U) while the edges comprise
of actorship (M-A), directorship (M-D), and user ratings (M-U).

• Yelp [3] is a dataset extracted from the social media released
in the competition of Yelp Dataset Challenge [3]. The nodes in
the network involve users (U), businesses (B), categories (C),
and locations (L) while the edges represent the relationships of
friendships (U-U), user reviews (B-U), business locations (B-L),
and business categories (B-C).

Baseline Methods. To evaluate the performance of MARU and
the quality of learned representations, we compare MARU with
five state-of-the-art homogeneous and heterogeneous network em-
bedding methods as follows.
• DeepWalk (DW) [24] and node2vec (N2V) [14] represent ran-
dom walk based homogeneous network embedding methods.
DeepWalk generates a number of fixed-length plain random
walks starting from each node while node2vec employs alias-
sampling to mimic the process of breadth-first search and ma-
nipulate random walks. Both of the methods are based on the
vanilla skip-gram model [21].

• LINE [32] represents an edge-sampling based homogeneous net-
work embedding method. Based on the edge-sampling algorithm,
LINE is able to efficiently capture both the first-order and second-
order proximity in the networks.

• HIN2Vec (H2V) [11] learns node embeddings by predicting the
existence of particular meta-paths between nodes with a meta-
path conditioned binary classifier.

• metapath2vec (M2V) [9] stands for meta-path based hetero-
geneous network embedding methods. With a predefined set
of meta-paths, metapath2vec guides the random walks through
meta-paths so that the prior heterogeneous knowledge can be
leveraged to the learned embeddings.

• JUST [18] is a heterogeneous network embedding method that
manipulates random walks by specific strategies. JUST intro-
duces a tactic for random walks to either jump to other nodes of
particular types or to stay on the current paths.

• HeGAN [17] enhances HIN by adversarial learning that provides
effective negative examples for more robust representations.
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Table 3: The statistics of three datasets for the task of multi-
label node classification.

Dataset DBIS MovieLens Yelp
Node Type Author (A) Movie (M) User (U)
Semantics Domains Genres Compliments

|L| 8 19 11
Avg. #(labels) 1.00 2.04 5.33

Note that we do not compare with GCN-based approaches because
most of those methods cannot tackle unsupervised representa-
tion learning. Although some methods like GraphSAGE [15] and
GAE [19] are applicable, they heavily rely on node features are
not in major comparisons as shown in previous studies [10] For
instance, the macro-F1 scores of both GraphSAGE and GAE are less
than 23% on the Yelp dataset when all of the other baseline methods
can reach over 30% with an arbitrary amount of training data.
Implementation Details.MARU is implemented by C and C++.
The size of sliding windows for meta-contexts 𝑡 is set as 6. The walk
length 𝑙 in the algorithms is 40 while the length of each generated
random walks is 81. For all of the methods, the dimension of node
embeddings is set to 128; the neighborhood size 𝑘 is set as 7; the
initial learning rate of stochastic gradient descent is set as 0.025;
the number of negative samples for each neighbor 𝑟 is 5.

5.2 Task 1: Multi-label Node Classification
Experimental Setup. In the task of multi-label node classification,
every node is associated with one or more labels from a finite label
set L. We adopt the author domains, movie genres, and user com-
pliments respectively for the DBIS, MovieLens, and Yelp datasets.
The statistics of these datasets are shown in Table 3. Moreover, the
labels are encoded in the networks so that the task is challenging
because the node embeddings need to reflect the semantics that
is not explicitly presented in the networks. To evaluate the per-
formance, we randomly sample 10% of the nodes as testing data
while the remaining nodes are treated as labeled data for training.
In addition, we also adjust the percentage of labeled data used in
the training process to demonstrate the robustness of methods.
The node representations of each method are treated as the input
of a one-vs-rest logistic regression model with L2 regularization.
Macro-F1 and Micro-F1 scores [25] are adopted as the evaluation
metrics for multi-label classification, thereby indicating the quality
of different representations.
Experimental Results. Figure 3 demonstrates the performance
of six methods on the task of multi-label node classification with
three datasets. Among all of the baseline methods, most of the het-
erogeneous network embedding methods, including H2V, M2V, and
JUST, outperform the other baselines in DBIS but perform worse
than others in Yelp. It can be because the structural information is
more important than the heterogeneous knowledge in Yelp. To be
more precise, existing heterogeneous network embedding methods
sacrifice the comprehensive understanding of network structures to
encode the heterogeneous knowledge and obtain unsatisfactory per-
formance when the structural information is imperative. Although
HeGAN applies adversarial learning to obtain better robustness in
Yelp, it performs worse in both DBIS and MovieLens due to more
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Figure 3: Performance of different methods for the multi-
label node classification task in three datasets. All improve-
ments of our approach over baseline methods are statisti-
cally significant at the 95% confidence level in a paired t-test.
Note that the Micro-F1 scores do not increase with more la-
beled nodes in some cases because of the imbalance of class
distribution.

parameters and overfitting. The proposed approach in this paper,
MARU significantly outperforms all of the baselines across differ-
ent percentages of training labeled nodes in three datasets. MARU
does not distort the generated random walks while incorporating
heterogeneous knowledge. At the same time, meta-contexts are
also beneficial for MARU as it picks up the tiny differences in local
heterogeneous contexts.

5.3 Taks 2: Node Clustering
Experimental Setup. The problem of node clustering is an unsu-
pervised machine learning task. We aim to cluster the nodes so that
the generated groups are as close to the true clusters as possible. In
each dataset, we modify the classes in multi-label classification to
construct the ground truth. For the DBIS dataset, the authors can
be categorized into different research domains. Each research do-
main represents one type of cluster. For the MovieLens dataset, five
genres, including Adventure, Action, Crime, Horror, and Sci-Fi,
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Figure 4: Performance of different methods for the node
clustering task in three datasets. All improvements of our
approach over baseline methods are statistically significant
at the 95% confidence level in a paired t-test.

represent five clusters. For the Yelp dataset, we separate users into
two groups. One group represents those users who have received
at least one compliment. The rest of the users are labeled other-
wise. For simplicity, the nodes in multiple clusters are removed.
In total, DBIS, MovieLens, and Yelp datasets have 8, 5, and 2 clus-
ters, respectively. For evaluation, the node representations of each
method are treated as the input of the K-Means++ algorithm [1] to
derive clusters. Finally, normalized mutual information (NMI) and
Adjusted Mutual Information (AMI) [35] are the evaluation metrics
that reveal the quality of node representations.
Experimental Results. Figure 4 illustrates the performance of
different methods for the task of node clustering in three datasets.
Similar to the results in the multi-label classification task, H2V
and M2V perform the best among all of the baselines in DBIS but
obtain worse performance than others in Yelp. Differently, JUST and
HeGAN perform reasonably well on all datasets. On the other hand,
the homogeneous network embedding methods perform poorly
in all of the datasets. One explanation is that the heterogeneous
knowledge is important for the task of clustering. Interestingly,
even though M2V exploits the heterogeneous knowledge by using
the meta-paths, the clustering performance significantly drops in
Yelp compared to other datasets. A possible reason could be the lack
of meaningful meta-paths for clustering in the Yelp network. On

Table 4: The AUC scores of different methods with four op-
erators for link prediction in three datasets.

Method Operator DBIS MOVIE YELP

DeepWalk [24] Hadamard 0.6367 0.9110 0.7330
Weighted-L2 0.6094 0.7904 0.6872

node2vec [14] Hadamard 0.6362 0.9060 0.6622
Weighted-L2 0.6292 0.7968 0.6848

LINE [32] Hadamard 0.5001 0.8631 0.5689
Weighted-L2 0.5751 0.7611 0.6229

HIN2Vec [11] Hadamard 0.8028 0.9651 0.8117
Weighted-L2 0.7240 0.7885 0.7137

metapath2vec [9] Hadamard 0.6778 0.9151 0.7372
Weighted-L2 0.7363 0.6996 0.8240

JUST [18] Hadamard 0.6463 0.9119 0.7453
Weighted-L2 0.6260 0.7845 0.6009

HeGAN [17] Hadamard 0.9597 0.9207 0.6361
Weighted-L2 0.6714 0.7970 0.7289

MARU Hadamard 0.9979 0.9963 0.7241
Weighted-L2 0.7468 0.7979 0.8315

the other hand, JUST does not need meta-paths and still performs
well. Compared to all of the baseline methods, our proposed MARU
consistently presents significant improvements against all baseline
methods across all datasets. As a result, it demonstrates that meta-
contexts and the algorithm of bidirectional extended random walks
are valuable for the node clustering task.

5.4 Task 3: Link Prediction
Experimental Setup. In the task of link prediction, we predict the
missing edges in the given network datasets. Here we randomly
remove 50% of edges from the networks for obtaining positive ex-
amples while generating an equal number of node pairs as negative
examples. To generate the edge features, we follow the previous
study [14] to exploit two binary operators to represent edges by
aggregating two node representations over all dimensions, includ-
ing the Hadamard product and weighted L2-distance. The features
of example edges are treated as the input of a logistic regression
model to learn their existence. Finally, the scores of Area Under
Curve (AUC) can be applied to evaluate the performance of link
prediction and the quality of representations.
Experimental Results. Table 4 shows the performance of differ-
ent methods for the task of link prediction in three datasets. In the
task of link prediction, our proposed approach MARU significantly
surpasses all of the baseline methods. Among the baseline methods,
HIN2Vec and metapath2vec perform the best as heterogeneous
network embedding methods. Interestingly, although LINE does
not have outstanding performances in the tasks of multi-label node
classification and node clustering, it has a satisfactory performance
for link prediction. It can be because LINE is an edge-sampling
based method so that it has more advantage in link prediction to
model the edge distributions. Interestingly, Grover and Leskovec
[14] report that the Hadamard operator always performs the best
in their study while only the datasets with homogeneous networks
are evaluated. This is partially inconsistent with the experimen-
tal results of heterogeneous networks. The reason can be that the
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Figure 5: The macro-F1 scores of MARU with classical ran-
domwalks and our proposed bidirectional extended random
walkswith 50% of training labeled nodes in the task ofmulti-
label node classification in DBIS and MovieLens.

embeddings become too sophisticated to estimate the relationship
between nodes by a simple dot-product when the types of nodes are
heterogeneous. The results also show the difference between homo-
geneous and heterogeneous network and emphasize the importance
of designing satisfactory algorithms to derive heterogeneous net-
work representations.

5.5 Analysis and Discussions
In this section, we first analyze the effectiveness of the proposed
algorithm of bidirectional extended random walks and then discuss
the sensitivity of the window size for observing meta-contexts.
Effectiveness of Bidirectional Extended Random Walks. To
verify the contribution of our proposed bidirectional extended ran-
dom walks, we first investigate the effectiveness of the algorithm.
Figure 5 shows the macro-F1 scores of MARU with classical ran-
dom walks and the proposed bidirectional extended random walks
with 50% of training labeled nodes in the task of multi-label node
classification in DBIS and MovieLens. After replacing the classical
random walks with the bidirectional extended random walks, the
classification performances are significantly improved by 2.04% and
4.07% in DBIS and MovieLens, respectively. It shows that the pro-
posed algorithm to generate bidirectional extended random walks
is actually beneficial to alleviate the insensitivity of classical ran-
dom walks to the tail nodes, thereby improving the performance of
downstream applications.
Window Size of Meta-contexts. Here we study how the size of
the sliding windows for meta-contexts affects the performance.
Figure 6 shows the macro-F1 scores of MARU over different per-
centages of labeled training data with different window sizes for
meta-contexts in the Yelp dataset. It is obvious that greater window
sizes lead to a better classification performance because the ob-
served contexts are more flexible and informative. However, larger
window sizes also lead to larger body of meta-contexts 𝑀 . For
example, in the Yelp dataset with 𝑡 = 6, the size of 𝑀 is greater
than 10,000, which can significantly increase the memory or disk
space consumption. On the other hand, the size of 𝑀 is less than
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Figure 6: TheMacro-F1 scores of MARU as a function of per-
centage of labeled training data and sliding window size for
meta-contexts in Yelp.

Table 5: The classification performance ofMARUover differ-
ent walk lengths 𝑙 of bidirectional extended random walks
with 50% of training labeled nodes in Yelp. Note that the
length of generated random walks is 2× 𝑙 + 1 because MARU
conducts random walks bidirectionally.

Metric 𝑙 = 10 𝑙 = 20 𝑙 = 40 𝑙 = 80 𝑙 = 100
Macro-F1 0.6842 0.6961 0.6999 0.6958 0.6969
Micro-F1 0.6998 0.7139 0.7186 0.7150 0.7151

1, 000 with 𝑡 = 4, rendering memory footprints more manageable.
Therefore, we set the window size 𝑡 as 4 in the parameter settings.
WalkLength 𝑙 ofBidirectional ExtendedRandomWalks.Here
we study how the length of random walks affects the performance.
Table 5 presents the classification performance of MARU over dif-
ferent walk lengths 𝑙 of bidirectional extended random walks (See
Algorithm 1 and 2) with 50% training labeled nodes in the Yelp
dataset. While the length of random walks increases, both micro-F1
and macro-F1 scores improve because of more prevalent informa-
tion. However, the performance peaks at 𝑙 = 40 and then drops with
longer random walks. This can be because longer random walks
cover more nodes with high scores of degree and betweenness so
that the contexts with tail nodes are less observed in the generated
random walks. The results also demonstrate that it is important
to design a good algorithm, such as the proposed bidirectional ex-
tended random walk, to alleviate the bias of conventional random
walk algorithms.
Size of Embedding Dimensions.We also discuss how the size of
embedding dimensions affects the performance. Table 6 shows the
classification performance of MARU over different sizes of embed-
ding dimensions 𝑑 with 50% of training labeled nodes in the Yelp
dataset. When the dimension increases, the performance improves
and peaks at 128. With a larger size of embedding dimensions,
the classification model becomes overfitted. As a result, we apply
𝑑 = 128 as the experimental setting across all experiments.

9

Full Paper Track CIKM '20, October 19–23, 2020, Virtual Event, Ireland

583



CIKM ’20, October 19–23, 2020, Virtual Event, Ireland Jyun-Yu Jiang, Zeyu Li, Chelsea J.-T. Ju and Wei Wang

Table 6: The classification performance of MARU over dif-
ferent sizes of embedding dimensions 𝑑 with 50% of training
labeled nodes in Yelp.

Metric 𝑑 = 16 𝑑 = 32 𝑑 = 64 𝑑 = 128 𝑑 = 256
Macro-F1 0.6931 0.6933 0.6982 0.6999 0.6974
Micro-F1 0.7112 0.7114 0.7154 0.7186 0.7156

6 CONCLUSIONS
In this paper, we propose MARU, a novel approach for heteroge-
neous network embedding by exploiting meta-contexts in random
walks. To address the bias caused by conventional random walks,
the algorithm of bidirectional extended randomwalks is proposed to
efficiently and fairly capture the comprehensive structural informa-
tion in the networks. The meta-context aware node embeddings are
then designed and optimized to represent properties of the nodes
for different local heterogeneous contexts, thereby inferring the
node representations based on aggregations over the meta-context
distributions. Extensive experiments demonstrate that our proposed
approach significantly outperforms state-of-the-art heterogeneous
network embedding methods across three general network mining
tasks, including multi-label node classification, node clustering,
and link prediction. The reasons and insights can be concluded as
follows: (1) the algorithm of bidirectional extended random walks
effectively alleviates the bias for tail nodes with a theoretical guaran-
tee; (2) the effectiveness of meta-contexts and meta-context aware
node embeddings implies that a node can have distinct proper-
ties with different local heterogeneous contexts, which benefit the
network representation learning; (3) the nature of heterogeneous
networks can be much different from the traits of homogeneous
networks, so it is crucial to tackle the problems of heterogeneous
networks with specific and appropriate technologies.

APPENDIX
A THE PROOF OF COROLLARY 1

Proof. For the one-directional random walk, the expected num-
ber of visited tail nodes is 𝐸𝑜 = 1 + ∑2𝑛

𝑖=0 𝑖 · 𝑝𝑖 · (1 − 𝑝). For the
bidirectional random walk, the expected number of visited tail
nodes is 𝐸𝑏 = 1 + 2 · ∑𝑛

𝑖=0 𝑖 · 𝑝𝑖 · (1 − 𝑝). Therefore, we have

lim
𝑛→∞

𝐸𝑏 − 𝐸𝑜 = lim
𝑛→∞

(1 − 𝑝) ·
(
𝑛∑
𝑖=1

𝑖 · 𝑝𝑖 − (𝑖 + 𝑛) · 𝑝𝑖+𝑛
)

= lim
𝑛→∞

𝑝 · (1 − 𝑝𝑛) · (2 · 𝑛 · 𝑝𝑛+1 − (2𝑛 + 1) · 𝑝𝑛 + 1)
1 − 𝑝

=
𝑝

1 − 𝑝
> 0
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