ntroduction	Analysis	of	Reformu

is of Reformulation Behavior

Our Approach

Experiments 000000 Applications 0 Conclusions 0

Learning User Reformulation Behavior for Query Auto-Completion

Jyun-Yu Jiang, Yen-Yu Ke, Pao-Yu Chien and Pu-Jen Cheng

Department of Compute Science and Information Engineering

National Taiwan University

July 9, 2014 (SIGIR)

- A common feature in modern search engines
 - Help users formulate queries while typing in the search boxes
- Given a user-typed prefix, N ranked completions are shown

Why Query Auto Completion?

- Typing queries costs too much
 - Users can save their keystrokes
- Further benefits
 - Spelling errors, query expansion, speed, ...

sigi ♪ sigir 2014 > sigir 2014 > sigil of power sign in sign sigil sigi schmid sigil of wisdom sigis

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

A D > A A P >

The goal of QAC

Rank the user's intended query in a high position with as few keystrokes as possible

J.-Y. Jiang et al. (NTU CSIE) Learning User Reformulation Behavior for Query Auto-Completion July 9, 2014 (SIGIR) 1 / 22

Introduction 0000	Analysis of Reformulation Behavior	Our Approach	Experiments 000000	Applications 0	Conclusions 0
Context	-Aware Approache	S			

- Context captures user's search intents.
 - submitted queries
 - click-through information

$$\underbrace{q_1 \rightarrow q_2 \rightarrow \cdots \rightarrow \cdot q_{T-1}}_{context} \rightarrow q_T$$

• Previous work statistically models query dependencies and similarity.

Query Session

- query dependencies [He2009]
- query similarity [Bar-Yossef2011]
- personal history [Shokouhi2013]

Click-through Data

- relevant queries [Mei2009]
- query clusters [Liao2011]
- click behavior [Ozertem2012]

However, a user may have some behavior in the context.

Introduction	Analysis of Reformulation Behavior	Our Approach	Experiments	Applications	Conclusions
○●○○		00000	000000	0	0
Context	t-Aware Approache	S			

- Context captures user's search intents.
 - submitted queries
 - click-through information

$$\underbrace{q_1 \rightarrow q_2 \rightarrow \cdots \rightarrow \cdot q_{\mathcal{T}-1}}_{context} \rightarrow q_{\mathcal{T}}$$

• Previous work statistically models query dependencies and similarity.

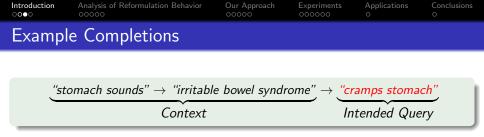
Query Session

- query dependencies [He2009]
- query similarity [Bar-Yossef2011]
- personal history [Shokouhi2013]

Click-through Data

- relevant queries [Mei2009]
- query clusters [Liao2011]
- click behavior [Ozertem2012]

However, a user may have some behavior in the context.


Completions from Conventional Approaches

- *"colon cancer symptoms"* (query similarity/dependencies)
 - from a context-aware QAC approach [Bar-Yossef et al., 2011]
- "celiac disease" (query dependencies)
 - from a context-aware QS approach [He et al., 2009]
- "colon cancer" (query clusters)
 - from a cluster-based context-aware QS approach [Liao et al., 2011]

How users reformulate their queries in search sessions?

A B b

A D > A A P >

Completions from Conventional Approaches

- *"colon cancer symptoms"* (query similarity/dependencies)
 - from a context-aware QAC approach [Bar-Yossef et al., 2011]
- "celiac disease" (query dependencies)
 - from a context-aware QS approach [He et al., 2009]
- "colon cancer" (query clusters)
 - from a cluster-based context-aware QS approach [Liao et al., 2011]

How users reformulate their queries in search sessions?

Introduction ○○○●	Analysis of Reformulation Behavior	Our Approach	Experiments 000000	Applications 0	Conclusions 0
User Re	eformulation Behav	vior			

Semantic Relations [Akahani *et al.*, 2002] – Difficult to Analyze

- \bullet specialization: narrow the search constraints, e.g., computer \rightarrow mac
- generalization: relax the search constraints, e.g., lion \rightarrow animal

Syntactic Relations [Rieh et al., 2006] – Simple to Analyze

- Syntactic and explicit changes between queries
 - Such as adding terms, removing terms, acronym expansion.
- Clear definitions of reformulation types [Jansen et al., 2009]
- Personalization [Jiang et al., 2011]

Introduction	Analysis of Reformulation Behavior	Our Approach	Experiments	Applications	Conclusions
○○○●		00000	000000	O	0
User Re	eformulation Behav	vior			

Semantic Relations [Akahani et al., 2002] - Difficult to Analyze

- \bullet specialization: narrow the search constraints, e.g., computer \rightarrow mac
- generalization: relax the search constraints, e.g., lion \rightarrow animal

Syntactic Relations [Rieh et al., 2006] - Simple to Analyze

- Syntactic and explicit changes between queries
 - Such as adding terms, removing terms, acronym expansion.
- Clear definitions of reformulation types [Jansen et al., 2009]
- Personalization [Jiang et al., 2011]

Introduction	Analysis of Reformulation Behavior	Our Approach	Experiments	Applications	Conclusions
○○○●		00000	000000	0	0
User Re	eformulation Behav	vior			

Semantic Relations [Akahani et al., 2002] - Difficult to Analyze

- \bullet specialization: narrow the search constraints, e.g., computer \rightarrow mac
- generalization: relax the search constraints, e.g., lion \rightarrow animal

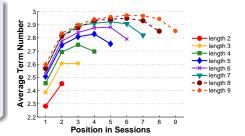
Syntactic Relations [Rieh et al., 2006] - Simple to Analyze

- Syntactic and explicit changes between queries
 - Such as adding terms, removing terms, acronym expansion.
- Clear definitions of reformulation types [Jansen et al., 2009]
- Personalization [Jiang et al., 2011]

Introduction	Analysis of Reformulation Behavior	Our Approach	Experiments	Applications	Conclusions
○○○●		00000	000000	0	0
User Re	eformulation Behav	vior			

Semantic Relations [Akahani et al., 2002] - Difficult to Analyze

- \bullet specialization: narrow the search constraints, e.g., computer \rightarrow mac
- generalization: relax the search constraints, e.g., lion \rightarrow animal

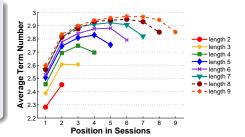

Syntactic Relations [Rieh et al., 2006] - Simple to Analyze

- Syntactic and explicit changes between queries
 - Such as adding terms, removing terms, acronym expansion.
- Clear definitions of reformulation types [Jansen et al., 2009]
- Personalization [Jiang et al., 2011]

Introduction	Analysis of Reformulation Behavior	Our Approach	Experiments	Applications	Conclusions
0000	●0000	00000	000000	0	0
Numbe	r of Terms in Quer	ies			

The number of terms will change while adding or removing terms.

- Queries in longer sessions tend to contain more terms.
- The first reformulation increases more than other steps.
- Increase along sessions, and drop near the end of sessions.


Helpful to filter intended queries by their lengths syntactically

Do such changes represent some semantic information?

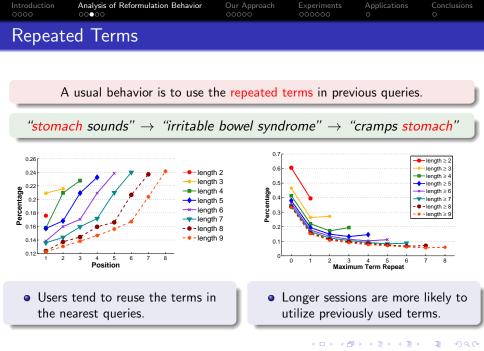
Introduction	Analysis of Reformulation Behavior	Our Approach	Experiments	Applications	Conclusions
0000	●0000		000000	0	0
Numbe	r of Terms in Quer	ies			

The number of terms will change while adding or removing terms.

- Queries in longer sessions tend to contain more terms.
- The first reformulation increases more than other steps.
- Increase along sessions, and drop near the end of sessions.

Helpful to filter intended queries by their lengths syntactically

Do such changes represent some semantic information?


Introduction	Analysis of Reformulation Behavior	Our Approach	Experiments	Applications	Conclusions
0000	○●○○○		000000	O	O
F C		C			

From Syntactic Relations to Semantic Relations

Semantic Relations

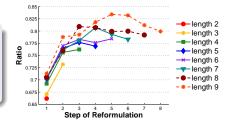
- Specialization: narrow the search constraints
 - More terms are required to describe the intents (constraints).
- Generalization: relax the search constraints
 - Terms (constraints) can be removed.
- 2,283 consecutive query pairs from 1,136 sessions are sampled and labeled.
- The syntactic analysis can help us learn semantic relations.

Relation	% in	Average	Median	Change of	% in	Example
Relation	Log	Position	Position	Term Number	Relation	Example
	Specialization 27.7% 2.9951			Increase	84.2%	camera o digital camera
Specialization			27.7% 2.9951	2.9951 2	2	Decrease
				Equal	12.1%	guest book for party $ ightarrow$ anniversary party guest book
				Increase	4.0%	airport parking newark \rightarrow airport parking new york
Generalization	12.2%	3.3122	3	Decrease	82.5%	great lakes auto $ ightarrow$ great lakes
				Equal	13.5%	honda blue book $ ightarrow$ car blue book

J.-Y. Jiang et al. (NTU CSIE) Learning User Reformulation Behavior for Query Auto-Completion July 9, 2014 (SIGIR) 7 / 22

		00000	0	0
Introduction	Analysis of Reformulation Behavior			

Click Behavior and Repeated Terms


Satisfaction Assumption

The satisfaction (click behavior) might effect a user choose repeated terms.

• 36.06%/50.54% of clicking/no-click users used repeated terms.

• If a query is without click, its terms would be reused probably later.

- Difference in the first step of reformulation is the largest.
- The first step is more dependent to click behavior than others.

Introduction Analysis of Reformulation Behavior Our Approach Experiments Applications Conclusions o

Summary of User Behavior Analysis

Summary

- The number of terms in queries
 - Trends of syntactic and semantic relations along sessions
- Repeated terms
 - How users utilize terms in the context
- Click behavior and repeated terms
 - How the satisfaction (click behavior) effect users' behavior

Learning user reformulation behavior is helpful for predicting queries!

- E > - E >

Introduction 0000	Analysis of Reformulation Behavior			Applications 0	Conclusions 0
^		D. D. C	1.1.1		

Query Auto-Completion with Reformulation

Problem Definition

- A session is a sequence of queries $\langle q_1, q_2, \cdots, q_T \rangle$
 - Each query q_i is issued in time t_i , and has c_i clicks.
 - Treat $\langle q_1, q_2, \cdots, q_{\mathcal{T}-1}
 angle$ as the context and $q_\mathcal{T}$ as the intended query.
- Given the context, the prefix and a candidate set $Q_T = \{q_i'\}$
- The goal is to rank queries in Q_T and let q_T in a high position.

Our Approach

- A supervised framework with LambdaMART learning-to-rank model.
- Various reformulation-based features in three categories
 - Term-level, Query-level and Session-level features
 - Attempt to capture how the user changes queries along the session.

・ 同 ト ・ ヨ ト ・ ヨ ト

Introduction	Analysis of Reformulation Behavior	Our Approach	Experiments	Applications	Conclusions
0000		○●○○○	000000	0	0
Term-le	vel Features				

Measure the effectiveness of terms in queries

- Reformulation Types [Akahani et al., 2002]
 - Add terms, Remove terms or Keep terms
 - Encoded as several categorical features
- Term-set Operation
 - Treat a query as a set of terms
 - Union, Intersection, Complacent of context and the query term-sets
 - Estimate how much information conveyed by information need
- Terms contained in both context and the candidate
 - Repeated terms are expected

Introduction 0000	Analysis of Reformulation Behavior	Our Approach	Experiments 000000	Applications 0	Conclusions 0
Query-I	evel Features				

Measure relations between context and queries in query-level

- Query Similarity
 - Similar syntactic structures under the same information need
 - term-based cosine similarity and Levenshtein distance are adopted
- Query Length
 - Trend of term numbers
 - Number of terms may not alter rapidly
- Query Frequency
 - Statistical information provided by search logs
 - Relevant frequency to the last query in the context

Introduction 0000	Analysis of Reformulation Behavior	Our Approach	Experiments 000000	Applications 0	Conclusions O
Session	-level Features				

Measure how users reformulate queries along whole sessions

Position Number

- The stage of the session
- Reformulation strategies may change over different positions

Click-through Information

- Click information is related to term-usage
- Number of clicks and term set with clicks
- Time Duration (dwell time)
 - Duration of time users stay on the search results
 - Indirectly represent the users' satisfaction

Introduction	Analysis of Reformulation Behavior	Our Approach	Experiments	Applications	Conclusions
0000		○○○○●	000000	0	0
Summa	ry of Reformulation	n-based F	eatures		

Summary

- Term-level features
 - modeled for term effectiveness
 - reformulation types, term-set operation and repeated terms
- Query-level features
 - modeled for query-session relationship
 - query similarity, query length and query frequency
- Session-level features
 - modeled for behavior along whole session
 - position number, click-through information and time duration

Reformulation-based features describe users' behavior in different levels.

Introduction	Analysis of Reformulation Behavior	Our Approach	Experiments	Applications	Conclusions
0000	00000	00000	•00000	0	O
Experin	nental Settings (1/	2)			

• A commercial search engine log from 1 May, 2013 to 7 May, 2013.

• Results are consistent and reproducible in public MSN and AOL log.

Data Pre-processing

- 30-minute threshold as the session boundary
- 4-day data for training, the remaining 3-day for testing
- Drop queries appear less than 10 times
- The prefix is the first character of q_T .
- The top-10 frequent queries are the candidate queries.
- Drop sessions with no answers in the candidate set.

Introduction	Analysis of Reformulation Behavior	Our Approach	Experiments	Applications	Conclusions
0000		00000	0●0000	0	0
Evnerin	nental Settings (2/	2)			

Testing Datasets

- Divide whole testing sessions into four datasets
 - Whole Testing Set (all sessions)
 - Short Sessions (sessions with 2 queries)
 - Medium Sessions (sessions with 3 to 4 queries)
 - Long Sessions (sessions with 5 or more queries)
- Evaluate performance on sessions with different lengths

Evaluation Metrics

- Mean Reciprocal Rank (MRR)
- Success Rate at top-k completions (SR@k)
 - The average percentage of the answers can be found in top-k completions.
- Fine-tune our *LambdaMART* ranking model with parameters of 1,000 decision tress across all experiments.

	non atitiva Dagalina	NA . J.L.		
Introduction 0000	Analysis of Reformulation Behavior	Our Approach 00000		

Four Competitive Baseline Models

- Most Popular Completion (MPC)
 - Maximum Likelihood Estimation (MLE) approach
 - Rank candidates by their frequencies
 - The naïve QAC baseline approach
- Hybrid Completion (Hyb.C) [Bar-Yossef et al., 2011]
 - Context-sensitive query completion method.
 - Consider both context information and the popularity
- Query-based VMM (QVMM) [He et al., 2009]
 - Context-aware query suggestion method
 - $\bullet\,$ Learn the probability of query transition along sessions with VMM models
- Concept-based VMM (CACB) [Liao et al., 2011]
 - Concept-based context-aware query suggestion method
 - Cluster queries into several concepts
 - Learn the concept transition along sessions with VMM models

Introduction	Analysis of Reformulation Behavior	Our Approach	Experiments	Applications	Conclusions
0000		00000	○○○●○○	0	O
Overall	Performance				

Dataset	Measure	MPC	Hyb.C	QVMM	CACB	Our Approach
	MRR	0.6415	0.6604 (+2.95%)	0.7137 (+11.25%)	0.7112 (+10.86%)	0.7433 (+15.87%)
Whole Testing Set	SR@1	0.4756	0.5017 (+5.50%)	0.5658 (+18.97%)	0.5593 (+17.61%)	0.6095 (+28.16%)
whole resting set	SR@2	0.6410	0.6625 (+3.36%)	0.7349 (+14.66%)	0.7363 (+14.88%)	0.7672 (+19.70%)
	SR@3	0.7623	0.7729 (+1.39%)	0.8293 (+8.79%)	0.8305 (+ 8.94%)	0.8474 (+11.16%)
	MRR	0.6338	0.6335 (-0.04%)	0.7125 (+12.43%)	0.7074 (+11.62%)	0.7224 (+13.98%)
Short Sessions	SR@1	0.4654	0.4633 (-0.45%)	0.5636 (+21.10%)	0.5519 (+18.59%)	0.5794 (+24.49%)
(2 Queries)	SR@2	0.6283	0.6310 (+0.43%)	0.7329 (+16.64%)	0.7348 (+16.95%)	0.7450 (+18.58%)
	SR@3	0.7575	0.7567 (-0.10%)	0.8291 (+9.46%)	0.8298 (+9.54%)	0.8320 (+9.84%)
	MRR	0.6513	0.6906 (+6.04%)	0.7161 (+9.95%)	0.7160 (+9.93%)	0.7654 (+17.50%)
Medium Sessions	SR@1	0.4889	0.5443 (+11.33%)	0.5707 (+16.74%)	0.5695 (+16.49%)	0.6420 (+31.32%)
(3 to 4 Queries)	SR@2	0.6552	0.6991 (+6.70%)	0.7369 (+12.47%)	0.7368 (+12.44%)	0.7892 (+20.45%)
	SR@3	0.7692	0.7928 (+3.06%)	0.8294 (+7.83%)	0.8305 (+7.98%)	0.8626 (+12.15%)
	MRR	0.6522	0.7076 (+8.49%)	0.7130 (+9.32%)	0.7162 (+9.82%)	0.7842 (+20.24%)
Long Sessions	SR@1	0.4885	0.5707 (+16.83%)	0.5631 (+15.27%)	0.5676 (+16.20%)	0.6656 (+36.27%)
(5 or more Queries)	SR@2	0.6632	0.7149 (+7.79%)	0.7394 (+11.49%)	0.7422 (+11.91%)	0.8139 (+22.72%)
	SR@3	0.7674	0.7974 (+3.91%)	0.8300 (+8.16%)	0.8335 (+8.61%)	0.8798 (+14.65%)

イロト イヨト イヨト イヨト

э.

Introduction 0000	Analysis of Reformulation Behavior	Our Approach	Experiments 000●00	Applications 0	Conclusions 0
Overall	Performance				

Dataset	Measure	MPC	Hyb.C	QVMM	CACB	Our Approach
Whole Testing Set	•	•		similar to N s have less co		sessions.
	MRR	0.6338	0.6335 (-0.04%)	0.7125 (+12.43%)	0.7074 (+11.62%)	0.7224 (+13.98%)
Short Sessions	SR@1	0.4654	0.4633 (-0.45%)	0.5636 (+21.10%)	0.5519 (+18.59%)	0.5794 (+24.49%)
(2 Queries)	SR@2	0.6283	0.6310 (+0.43%)	0.7329 (+16.64%)	0.7348 (+16.95%)	0.7450 (+18.58%)
	SR@3	0.7575	0.7567 (-0.10%)	0.8291 (+9.46%)	0.8298 (+9.54%)	0.8320 (+9.84%)
	MRR	0.6513	0.6906 (+6.04%)	0.7161 (+9.95%)	0.7160 (+9.93%)	0.7654 (+17.50%)
Medium Sessions	SR@1	0.4889	0.5443 (+11.33%)	0.5707 (+16.74%)	0.5695 (+16.49%)	0.6420 (+31.32%)
(3 to 4 Queries)	SR@2	0.6552	0.6991 (+6.70%)	0.7369 (+12.47%)	0.7368 (+12.44%)	0.7892 (+20.45%)
	SR@3	0.7692	0.7928 (+3.06%)	0.8294 (+7.83%)	0.8305 (+7.98%)	0.8626 (+12.15%)
	MRR	0.6522	0.7076 (+8.49%)	0.7130 (+9.32%)	0.7162 (+9.82%)	0.7842 (+20.24%)
Long Sessions	SR@1	0.4885	0.5707 (+16.83%)	0.5631 (+15.27%)	0.5676 (+16.20%)	0.6656 (+36.27%)
(5 or more Queries)	SR@2	0.6632	0.7149 (+7.79%)	0.7394 (+11.49%)	0.7422 (+11.91%)	0.8139 (+22.72%)
	SR@3	0.7674	0.7974 (+3.91%)	0.8300 (+8.16%)	0.8335 (+8.61%)	0.8798 (+14.65%)

▲□▶ ▲圖▶ ▲国▶ ▲国▶

3

Introduction 0000	Analysis of Reformulation Behavior	Our Approach	Experiments ○○○●○○	Applications O	Conclusions 0
Overall	Performance				

Dataset	Measure	MPC	Hyb.C	QVMM	CACB	Our Approach
Whole Testing Set		•	er in longer context.	sessions.		
	MRR	0.6338	0.6335 (-0.04%)	0.7125 (+12.43%)	0.7074 (+11.62%)	0.7224 (+13.98%)
Short Sessions	SR@1	0.4654	0.4633 (-0.45%)	0.5636 (+21.10%)	0.5519 (+18.59%)	0.5794 (+24.49%)
(2 Queries)	SR@2	0.6283	0.6310 (+0.43%)	0.7329 (+16.64%)	0.7348 (+16.95%)	0.7450 (+18.58%)
	SR@3	0.7575	0.7567 (-0.10%)	0.8291 (+9.46%)	0.8298 (+9.54%)	0.8320 (+9.84%)
	MRR	0.6513	0.6906 (+6.04%)	0.7161 (+9.95%)	0.7160 (+9.93%)	0.7654 (+17.50%)
Medium Sessions	SR@1	0.4889	0.5443 (+11.33%)	0.5707 (+16.74%)	0.5695 (+16.49%)	0.6420 (+31.32%)
(3 to 4 Queries)	SR@2	0.6552	0.6991 (+6.70%)	0.7369 (+12.47%)	0.7368 (+12.44%)	0.7892 (+20.45%)
	SR@3	0.7692	0.7928 (+3.06%)	0.8294 (+7.83%)	0.8305 (+7.98%)	0.8626 (+12.15%)
	MRR	0.6522	0.7076 (+8.49%)	0.7130 (+9.32%)	0.7162 (+9.82%)	0.7842 (+20.24%)
Long Sessions	SR@1	0.4885	0.5707 (+16.83%)	0.5631 (+15.27%)	0.5676 (+16.20%)	0.6656 (+36.27%)
(5 or more Queries)	SR@2	0.6632	0.7149 (+7.79%)	0.7394 (+11.49%)	0.7422 (+11.91%)	0.8139 (+22.72%)
	SR@3	0.7674	0.7974 (+3.91%)	0.8300 (+8.16%)	0.8335 (+8.61%)	0.8798 (+14.65%)

J.-Y. Jiang et al. (NTU CSIE) Learning User Reformulation Behavior for Query Auto-Completion July 9, 2014 (SIGIR) 18 / 22

イロト イヨト イヨト イヨト

æ

Introduction 0000	Analysis of Reformulation Behavior	Our Approach 00000	Experiments	Applications O	Conclusions 0
Overall	Performance				

Dataset	Measure	MPC	Hyb.C	QVMM	CACB	Our Approach		
	MRR	0.6415	0.6604 (+2.95%)	0.7137 (+11.25%)	0.7112 (+10.86%)	0.7433 (+15.87%)		
Whole Testing Set	SR@1	0.4756	0.5017 (+5.50%)	0.5658 (+18.97%)	0.5593 (+17.61%)	0.6095 (+28.16%)		
whole resting set	SR@2	0.6410	0.6625 (+3.36%)	0.7349 (+14.66%)	0.7363 (+14.88%)	0.7672 (+19.70%)		
	SR@3	0.7623	0.7729 (+1.39%)	0.8293 (+8.79%)	0.8305 (+ 8.94%)	0.8474 (+11.16%)		
Short Sessi QVMM outperforms Hyb.C by modeling query transitions.								
(2 queries)	SR@3	0.7575	0.7567 (-0.10%)	0.8291 (+9.46%)	0.8298 (+9.54%)	0.8320 (+9.84%)		
	MRR	0.6513	0.6906 (+6.04%)	0.7161 (+9.95%)	0.7160 (+9.93%)	0.7654 (+17.50%)		
Medium Sessions	SR@1	0.4889	0.5443 (+11.33%)	0.5707 (+16.74%)	0.5695 (+16.49%)	0.6420 (+31.32%)		
(3 to 4 Queries)	SR@2	0.6552	0.6991 (+6.70%)	0.7369 (+12.47%)	0.7368 (+12.44%)	0.7892 (+20.45%)		
	SR@3	0.7692	0.7928 (+3.06%)	0.8294 (+7.83%)	0.8305 (+7.98%)	0.8626 (+12.15%)		
	MRR	0.6522	0.7076 (+8.49%)	0.7130 (+9.32%)	0.7162 (+9.82%)	0.7842 (+20.24%)		
Long Sessions	SR@1	0.4885	0.5707 (+16.83%)	0.5631 (+15.27%)	0.5676 (+16.20%)	0.6656 (+36.27%)		
(5 or more Queries)	SR@2	0.6632	0.7149 (+7.79%)	0.7394 (+11.49%)	0.7422 (+11.91%)	0.8139 (+22.72%)		
	SR@3	0.7674	0.7974 (+3.91%)	0.8300 (+8.16%)	0.8335 (+8.61%)	0.8798 (+14.65%)		

J.-Y. Jiang et al. (NTU CSIE) Learning User Reformulation Behavior for Query Auto-Completion July 9, 2014 (SIGIR) 18 / 22

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

э.

		alysis of Reformulation Behavior				oeriments App ○●○○ ○	lications Conclusions O		
(Overall Performance								
[Dataset	Measure	MPC	Hyb.C	QVMM	CACB	Our Approach		
ĺ		MRR	0.6415	0.6604 (+2.95%)	0.7137 (+11.25%)	0.7112 (+10.86%)	0.7433 (+15.87%)		
	Whole Testing Set	SR@1	0.4756	0.5017 (+5.50%)	0.5658 (+18.97%)	0.5593 (+17.61%)	0.6095 (+28.16%)		
		SR@2	0.6410	0.6625 (+3.36%)	0.7349 (+14.66%)	0.7363 (+14.88%)	0.7672 (+19.70%)		
		SR@3	0.7623	0.7729 (+1.39%)	0.8293 (+8.79%)	0.8305 (+ 8.94%)	0.8474 (+11.16%)		

S	CACB has no	improvement	against	QVMM	because	of sparseness.	
---	-------------	-------------	---------	------	---------	----------------	--

(2 guerres)	01162	0.0200	0.0010 (10.1070)	0.1020 (10.01/0)	0.1010 (10.0070)	0.1.100 (10.0070)
	SR@3	0.7575	0.7567 (-0.10%)	0.8291 (+9.46%)	0.8298 (+9.54%)	0.8320 (+9.84%)
	MRR	0.6513	0.6906 (+6.04%)	0.7161 (+9.95%)	0.7160 (+9.93%)	0.7654 (+17.50%)
Medium Sessions	SR@1	0.4889	0.5443 (+11.33%)	0.5707 (+16.74%)	0.5695 (+16.49%)	0.6420 (+31.32%)
(3 to 4 Queries)	SR@2	0.6552	0.6991 (+6.70%)	0.7369 (+12.47%)	0.7368 (+12.44%)	0.7892 (+20.45%)
	SR@3	0.7692	0.7928 (+3.06%)	0.8294 (+7.83%)	0.8305 (+7.98%)	0.8626 (+12.15%)
	MRR	0.6522	0.7076 (+8.49%)	0.7130 (+9.32%)	0.7162 (+9.82%)	0.7842 (+20.24%)
Long Sessions	SR@1	0.4885	0.5707 (+16.83%)	0.5631 (+15.27%)	0.5676 (+16.20%)	0.6656 (+36.27%)
(5 or more Queries)	SR@2	0.6632	0.7149 (+7.79%)	0.7394 (+11.49%)	0.7422 (+11.91%)	0.8139 (+22.72%)
	SR@3	0.7674	0.7974 (+3.91%)	0.8300 (+8.16%)	0.8335 (+8.61%)	0.8798 (+14.65%)

-

э

э

Introduction 0000	Analysis of Reformulation Behavior	Our Approach 00000	Experiments	Applications 0	Conclusions 0
Overall	Performance				

Dataset	Measure	MPC	Hyb.C	QVMM	CACB	Our Approach		
	MRR	0.6415	0.6604 (+2.95%)	0.7137 (+11.25%)	0.7112 (+10.86%)	0.7433 (+15.87%)		
Whole Testing Set	SR@1	0.4756	0.5017 (+5.50%)	0.5658 (+18.97%)	0.5593 (+17.61%)	0.6095 (+28.16%)		
whole resting set	SR@2	0.6410	0.6625 (+3.36%)	0.7349 (+14.66%)	0.7363 (+14.88%)	0.7672 (+19.70%)		
	SR@3	0.7623	0.7729 (+1.39%)	0.8293 (+8.79%)	0.8305 (+ 8.94%)	0.8474 (+11.16%)		
	MRR	2						
Short Sessions	SR@1	Our approach significantly outperforms all baselines.						
(2 Queries)	SR@2	0.0200	0.0010 (10.7070)	0.1020 (10.07/0)	0.1570 (10.5570)	0.1 700 (1 20.00 /0)		
	SR@3	0.7575	0.7567 (-0.10%)	0.8291 (+9.46%)	0.8298 (+9.54%)	0.8320 (+9.84%)		
	MRR	0.6513	0.6906 (+6.04%)	0.7161 (+9.95%)	0.7160 (+9.93%)	0.7654 (+17.50%)		
Medium Sessions	SR@1	0.4889	0.5443 (+11.33%)	0.5707 (+16.74%)	0.5695 (+16.49%)	0.6420 (+31.32%)		
(3 to 4 Queries)	SR@2	0.6552	0.6991 (+6.70%)	0.7369 (+12.47%)	0.7368 (+12.44%)	0.7892 (+20.45%)		
	SR@3	0.7692	0.7928 (+3.06%)	0.8294 (+7.83%)	0.8305 (+7.98%)	0.8626 (+12.15%)		
	MRR	0.6522	0.7076 (+8.49%)	0.7130 (+9.32%)	0.7162 (+9.82%)	0.7842 (+20.24%)		
Long Sessions	SR@1	0.4885	0.5707 (+16.83%)	0.5631 (+15.27%)	0.5676 (+16.20%)	0.6656 (+36.27%)		
(5 or more Queries)	SR@2	0.6632	0.7149 (+7.79%)	0.7394 (+11.49%)	0.7422 (+11.91%)	0.8139 (+22.72%)		
	SR@3	0.7674	0.7974 (+3.91%)	0.8300 (+8.16%)	0.8335 (+8.61%)	0.8798 (+14.65%)		

J.-Y. Jiang et al. (NTU CSIE) Learning User Reformulation Behavior for Query Auto-Completion July 9, 2014 (SIGIR) 18 / 22

▲□▶ ▲圖▶ ▲国▶ ▲国▶

3

Introduction	Analysis of Reformulation Behavior	Our Approach	Experiments	Applications	Conclusions
0000		00000	000●00	0	0
Overall	Performance				

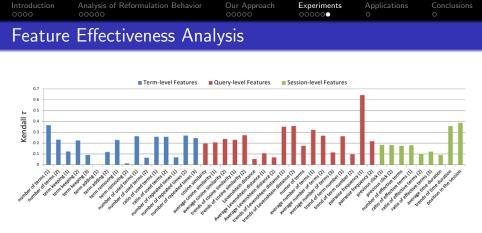
Dataset	Measure	MPC	Hyb.C	QVMM	CACB	Our Approach
	MRR	0.6415	0.6604 (+2.95%)	0.7137 (+11.25%)	0.7112 (+10.86%)	0.7433 (+15.87%)
Whole _	SP@1	0 4756	0 5017 (15 50%)	0 5658 (±18 07%)	0 5503 (±17 61%)	0.6095 (+28.16%)
• Pe	rforms	bett	er in longer :	sessions	E.	0.7672 (+19.70%)
	0.8474 (+11.16%)					
	• Long	501 500	Sions are eas	ier to model l		0.7224 (+13.98%)
Short Sessions	SR@1	0.4654	0.4633 (-0.45%)	0.5636 (+21.10%)	0.5519 (+18.59%)	0.5794 (+24.49%)
(2 Queries)	SR@2	0.6283	0.6310 (+0.43%)	0.7329 (+16.64%)	0.7348 (+16.95%)	0.7450 (+18.58%)
	SR@3	0.7575	0.7567 (-0.10%)	0.8291 (+9.46%)	0.8298 (+9.54%)	0.8320 (+9.84%)
	MRR	0.6513	0.6906 (+6.04%)	0.7161 (+9.95%)	0.7160 (+9.93%)	0.7654 (+17.50%)
Medium Sessions	SR@1	0.4889	0.5443 (+11.33%)	0.5707 (+16.74%)	0.5695 (+16.49%)	0.6420 (+31.32%)
(3 to 4 Queries)	SR@2	0.6552	0.6991 (+6.70%)	0.7369 (+12.47%)	0.7368 (+12.44%)	0.7892 (+20.45%)
	SR@3	0.7692	0.7928 (+3.06%)	0.8294 (+7.83%)	0.8305 (+7.98%)	0.8626 (+12.15%)
	MRR	0.6522	0.7076 (+8.49%)	0.7130 (+9.32%)	0.7162 (+9.82%)	0.7842 (+20.24%)
Long Sessions	SR@1	0.4885	0.5707 (+16.83%)	0.5631 (+15.27%)	0.5676 (+16.20%)	0.6656 (+36.27%)
(5 or more Queries)	SR@2	0.6632	0.7149 (+7.79%)	0.7394 (+11.49%)	0.7422 (+11.91%)	0.8139 (+22.72%)
	SR@3	0.7674	0.7974 (+3.91%)	0.8300 (+8.16%)	0.8335 (+8.61%)	0.8798 (+14.65%)

J.-Y. Jiang et al. (NTU CSIE) Learning User Reformulation Behavior for Query Auto-Completion July 9, 2014 (SIGIR) 18 / 22

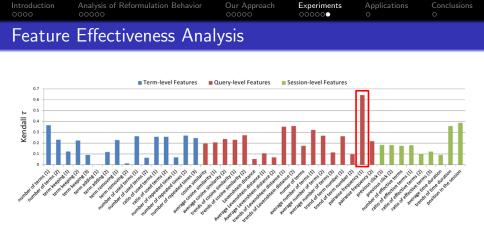
イロト イヨト イヨト イヨト

3

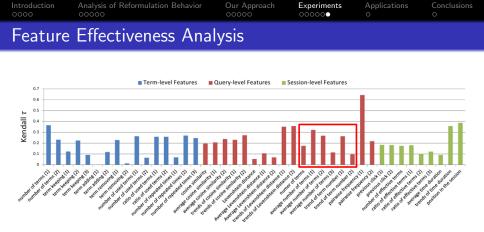
Introduction	Analysis of Reformulation Behavior	Our Approach	Experiments	Applications	Conclusions
0000		00000	○○○○●○	0	0
C					

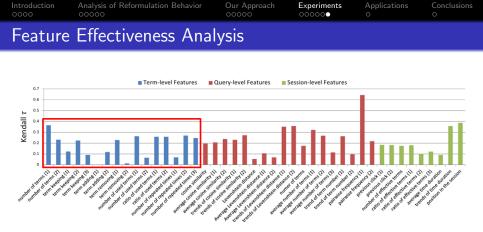

Summary of Overall Performance

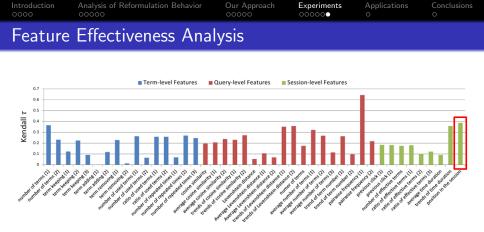
For baseline approaches

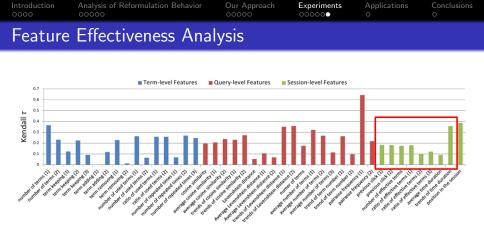

- Hyb.C method is similar to MPC in short sessions (less context)
- Hyb.C method performs better in longer sessions (more context)
- QVMM outperforms Hyb.C by modeling query transitions
- CACB has no improvement against QVMM because of sparseness

For our approach


- Significantly outperforms all of baseline approaches
- Performs better in longer sessions (easier to model behavior)


- The query-frequency is the most significant feature (conventional approaches)
- Query length is useful (the analysis of term numbers)
- Most of term-level features are helpful (modeling complex reformulation behavior)
- The position in the session is highly related (reformulation stage)
- Clicks (satisfaction) and time duration are also effective.


- The query-frequency is the most significant feature (conventional approaches)
- Query length is useful (the analysis of term numbers)
- Most of term-level features are helpful (modeling complex reformulation behavior)
- The position in the session is highly related (reformulation stage)
- Clicks (satisfaction) and time duration are also effective.


- The query-frequency is the most significant feature (conventional approaches)
- Query length is useful (the analysis of term numbers)
- Most of term-level features are helpful (modeling complex reformulation behavior)
- The position in the session is highly related (reformulation stage)
- Clicks (satisfaction) and time duration are also effective.

- The query-frequency is the most significant feature (conventional approaches)
- Query length is useful (the analysis of term numbers)
- Most of term-level features are helpful (modeling complex reformulation behavior)
- The position in the session is highly related (reformulation stage)
- Clicks (satisfaction) and time duration are also effective.

- The query-frequency is the most significant feature (conventional approaches)
- Query length is useful (the analysis of term numbers)
- Most of term-level features are helpful (modeling complex reformulation behavior)
- The position in the session is highly related (reformulation stage)
- Clicks (satisfaction) and time duration are also effective.

- The query-frequency is the most significant feature (conventional approaches)
- Query length is useful (the analysis of term numbers)
- Most of term-level features are helpful (modeling complex reformulation behavior)
- The position in the session is highly related (reformulation stage)
- Clicks (satisfaction) and time duration are also effective.

Introduction	Analysis of Reformulation Behavior	Our Approach	Experiments	Applications	Conclusions
0000	00000		000000	•	0
Application: Query Suggestion					

- Query suggestion is an application of our approach.
- Queries in high positions may be also relevant.
- The adjacency frequency $P(q_T|q_{T-1})$ is the naïve baseline.
- Experimental settings
 - Sample 100 sessions from testing data and apply 3 approaches
 - Manually labeling top 15 queries and evaluate with NDCG

NDCG	Adj. Freq.	QVMM	Our Approach
@5	0.5817	0.6036 (+3.76%)	0.5973 (+2.68%)
@10	0.5941	0.6152 (+3.55%)	0.6175 (+3.94%)
@15	0.6949	0.7090 (+2.03%)	0.7127 (+2.56%)

Introduction 0000	Analysis of Reformulation Behavior	Our Approach	Experiments 000000	Applications 0	Conclusions •
Conclusions					

- Extensive analysis shows reformulation behavior is helpful for QAC
- Propose a supervised approach for query auto-completion
- Our approach requires less data for training
- Our approach considers different user behavior for reformulation
- All of three-type features are useful and important.
- Our approach actually helps users save their keystrokes.

Thank you for listening! Questions?

Introduction 0000	Analysis of Reformulation Behavior	Our Approach	Experiments 000000	Applications 0	Conclusions •
Conclusions					

- Extensive analysis shows reformulation behavior is helpful for QAC
- Propose a supervised approach for query auto-completion
- Our approach requires less data for training
- Our approach considers different user behavior for reformulation
- All of three-type features are useful and important.
- Our approach actually helps users save their keystrokes.

Thank you for listening! Questions?