Introduction	Session-based Heterogeneous graph Embedding for User Identification (SHE-UI)	Experiments	Conclusions

Identifying Users behind Shared Accounts in Online Streaming Services

Jyun-Yu Jiang[†], Cheng-Te Li[‡], Yian Chen^{*} and Wei Wang[†]

[†]University of California, Los Angeles (UCLA) [‡]National Cheng Kung University (NCKU) *KKBOX Inc.

July 9, 2018 (SIGIR)

J.-Y. Jiang et al. (UCLA) Identifying Users behind Shared Accounts in Online Streaming July 9, 2018 (SIGIR) 0 / 17

		Experiments	Conclusions
0000	000000	000000	

Online Streaming Services

Online streaming services are popular nowadays.

J.-Y. Jiang et al. (UCLA) Identifying Users behind Shared Accounts in Online Streaming July 9, 2018 (SIGIR) 1 / 17

(日) (同) (三) (三)

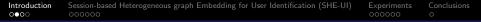
However, they might not be free.

• Membership is usually not free.

- Spotify charges \$9.99 per month
- Netflix charges \$7.99 per month
- Hulu charges \$7.99 per month
- Amazon charges \$99 per year
- • •

• Tendency to save money by sharing accounts

Some users may choose to <mark>share</mark> one account!



However, they might not be free.

• Membership is usually not free.

- Spotify charges \$9.99 per month
- Netflix charges \$7.99 per month
- Hulu charges \$7.99 per month
- Amazon charges \$99 per year
- • •

• Tendency to save money by sharing accounts

Some users may choose to <mark>share</mark> one account!

However, they might not be free.

- Membership is usually not free.
 - Spotify charges \$9.99 per month
 - Netflix charges \$7.99 per month
 - Hulu charges \$7.99 per month
 - Amazon charges \$99 per year
 - • •

• Tendency to save money by sharing accounts

Some users may choose to share one account!

Lost Revenue

- When n users share an account, n 1 fees are lost.
- Policy violation

Personalized Recommenders

- Transactions of an account are a mixture of multi-user activities.
- Unsatisfactory recommendations

Identifying users behind shared accounts is important!

J.-Y. Jiang et al. (UCLA) Identifying Users behind Shared Accounts in Online Streaming July 9, 2018 (SIGIR) 3 / 17

Lost Revenue

- When n users share an account, n 1 fees are lost.
- Policy violation

Personalized Recommenders

- Transactions of an account are a mixture of multi-user activities.
- Unsatisfactory recommendations

Identifying users behind shared accounts is important!

J.-Y. Jiang et al. (UCLA) Identifying Users behind Shared Accounts in Online Streaming July 9, 2018 (SIGIR) 3 / 17

Lost Revenue

- When n users share an account, n 1 fees are lost.
- Policy violation

Personalized Recommenders

- Transactions of an account are a mixture of multi-user activities.
- Unsatisfactory recommendations

Identifying users behind shared accounts is important!

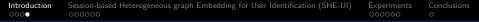
Lost Revenue

- When n users share an account, n 1 fees are lost.
- Policy violation

Personalized Recommenders

- Transactions of an account are a mixture of multi-user activities.
- Unsatisfactory recommendations

Identifying users behind shared accounts is important!



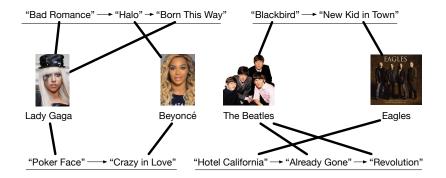
"Bad Romance" → "Halo" → "Born This Way"

"Blackbird" --- "New Kid in Town"

(日) (周) (三) (三)

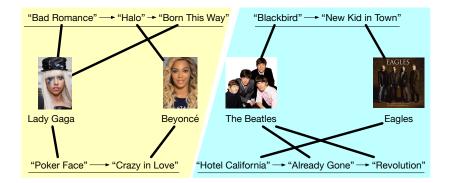
э

"Poker Face" → "Crazy in Love" "Hotel California" → "Already Gone" → "Revolution"



(日) (周) (三) (三)

э



(日) (周) (三) (三)

3



(日) (周) (三) (三)

э



In this work, we exploit meta information of items to identify users.

J.-Y. Jiang et al. (UCLA) Identifying Users behind Shared Accounts in Online Streaming July 9, 2018 (SIGIR) 4 / 17

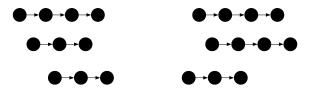
(日) (周) (三) (三)

Problem Definition

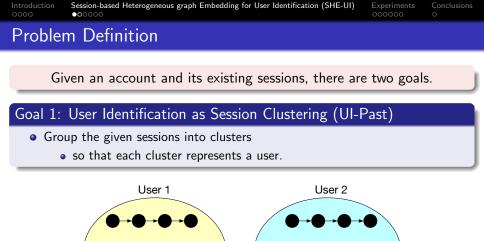
Given an account and its existing sessions, there are two goals.

Goal 1: User Identification as Session Clustering (UI-Past)

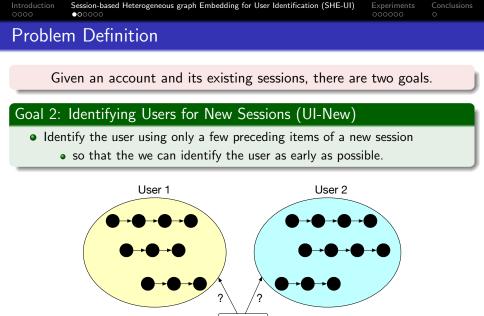
- Group the given sessions into clusters
 - so that each cluster represents a user.



▶ < ∃ ▶ < ∃</p>



- E - N



New Incoming Session

J.-Y. Jiang et al. (UCLA) Identifying Users behind Shared Accounts in Online Streaming July 9, 2018 (SIGIR) 5 / 17

Introduction 0000 Session-based Heterogeneous graph Embedding for User Identification (SHE-UI) $\circ \circ \circ \circ \circ \circ$

Experiments Conclusions

Framework Overview of SHE-UI

Session-based Heterogeneous graph Embedding for User Identification(SHE-UI)



Treat each cluster as a user

Find the closest cluster

- 4 同 6 4 日 6 4 日 6

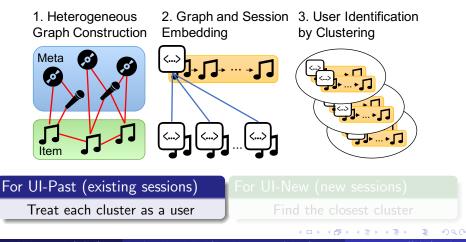
J.-Y. Jiang et al. (UCLA) Identifying Users behind Shared Accounts in Online Streaming July 9, 2018 (SIGIR) 6 / 17

Introduction 0000 Session-based Heterogeneous graph Embedding for User Identification (SHE-UI) $\circ \circ \circ \circ \circ \circ$

Experiments Conclusions

Framework Overview of SHE-UI

Session-based Heterogeneous graph Embedding for User Identification(SHE-UI)



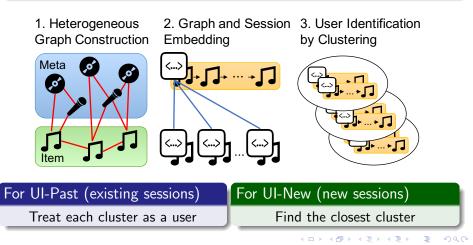
J.-Y. Jiang et al. (UCLA) Identifying Users behind Shared Accounts in Online Streaming July 9, 2018 (SIGIR) 6 / 17

Introduction 0000 Session-based Heterogeneous graph Embedding for User Identification (SHE-UI) $\circ \circ \circ \circ \circ \circ$

Experiments Conclusions

Framework Overview of SHE-UI

Session-based Heterogeneous graph Embedding for User Identification(SHE-UI)



J.-Y. Jiang et al. (UCLA) Identifying Users behind Shared Accounts in Online Streaming July 9, 2018 (SIGIR) 6 / 17

- Items and their meta information can be represented by nodes.
- Relationships among items and meta are represented by edges.

"Bad Romance" "Halo" "Born This Way"

Lady Gaga

Album "The Fame Monster"

Beyoncé

"Poker Face" "Crazy in Love"

- Items and their meta information can be represented by nodes.
- Relationships among items and meta are represented by edges.

"Bad Romance" — "Halo" — "Born This Way"

Lady Gaga

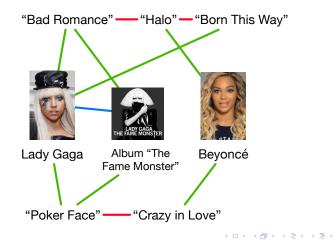
Album "The Fame Monster"

Beyoncé

"Poker Face" ----- "Crazy in Love"

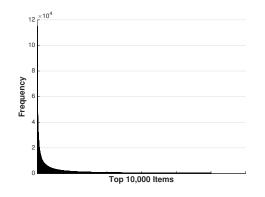
- Items and their meta information can be represented by nodes.
- Relationships among items and meta are represented by edges.

- Items and their meta information can be represented by nodes.
- Relationships among items and meta are represented by edges.



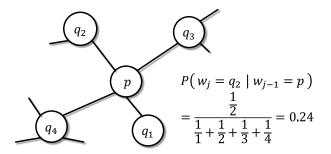
Graph and Session Embedding

- Random walks are commonly utilized for node embedding.
- However, their popularity has a large variance.
 - i.e., some items will be over-optimized.



Normalized Random Walk for Node Embedding

• Normalize probabilities with node degrees

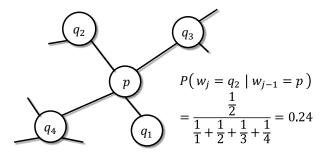


Skip-gram architectures such as DeepWalk can then be applied to learn node embeddings.

J.-Y. Jiang et al. (UCLA) Identifying Users behind Shared Accounts in Online Streaming July 9, 2018 (SIGIR) 9 / 17

Normalized Random Walk for Node Embedding

• Normalize probabilities with node degrees



Skip-gram architectures such as DeepWalk can then be applied to learn node embeddings.

J.-Y. Jiang et al. (UCLA) Identifying Users behind Shared Accounts in Online Streaming July 9, 2018 (SIGIR) 9 / 17

Introduction	Session-based Heterogeneous graph Embedding for User Identification (SHE-UI)	Experiments	Conclusions
	000000		

- Session embedding can be computed by aggregating item embeddings.
- But repeated items in a session may cause issues.
 - 100 play counts v.s. 20 play counts, 1 play count v.s. 2 play counts

Occurrence-Preference Assumption (Gopalan et al., NIPS'14)

The item occurrences is proportional to the square of the preference score.

• The features of the session *s* can be computed as:

$$f(s) = \frac{1}{\sum_{i \in U(s)} \sqrt{C(s,i)}} \sum_{i \in U(s)} \sqrt{C(s,i)} \cdot f(i).$$

We then cluster the sessions in the item-based session embedding space.

Introduction	Session-based Heterogeneous graph Embedding for User Identification (SHE-UI)	Experiments	Conclusions
	000000		

- Session embedding can be computed by aggregating item embeddings.
- But repeated items in a session may cause issues.
 - 100 play counts v.s. 20 play counts, 1 play count v.s. 2 play counts

Occurrence-Preference Assumption (Gopalan et al., NIPS'14)

The item occurrences is proportional to the square of the preference score.

• The features of the session *s* can be computed as:

$$f(s) = \frac{1}{\sum_{i \in U(s)} \sqrt{C(s,i)}} \sum_{i \in U(s)} \sqrt{C(s,i)} \cdot f(i).$$

We then cluster the sessions in the item-based session embedding space.

00000 000000	Experiments	Session-based Heterogeneous graph Embedding for User Identification (SHE-UI)	Introduction
		000000	

- Session embedding can be computed by aggregating item embeddings.
- But repeated items in a session may cause issues.
 - 100 play counts v.s. 20 play counts, 1 play count v.s. 2 play counts

Occurrence-Preference Assumption (Gopalan et al., NIPS'14)

The item occurrences is proportional to the square of the preference score.

• The features of the session s can be computed as:

$$f(s) = \frac{1}{\sum_{i \in U(s)} \sqrt{C(s,i)}} \sum_{i \in U(s)} \sqrt{C(s,i)} \cdot f(i).$$

We then cluster the sessions in the item-based session embedding space.

00000 000000	Experiments	Session-based Heterogeneous graph Embedding for User Identification (SHE-UI)	Introduction
		000000	

- Session embedding can be computed by aggregating item embeddings.
- But repeated items in a session may cause issues.
 - 100 play counts v.s. 20 play counts, 1 play count v.s. 2 play counts

Occurrence-Preference Assumption (Gopalan et al., NIPS'14)

The item occurrences is proportional to the square of the preference score.

• The features of the session s can be computed as:

$$f(s) = \frac{1}{\sum_{i \in U(s)} \sqrt{C(s,i)}} \sum_{i \in U(s)} \sqrt{C(s,i)} \cdot f(i).$$

We then cluster the sessions in the item-based session embedding space.

J.-Y. Jiang et al. (UCLA) Identifying Users behind Shared Accounts in Online Streaming July 9, 2018 (SIGIR) 10 / 17

Experimental Settings

- Two datasets
 - Real-world KKBOX dataset
 - Synthetic Last.fm dataset
- Segment logs into sessions with a 30-minute threshold
- Remove inactive accounts and short sessions

(a) Session	on Inforr	nation
-------------	-----------	--------

(b) metadata

	Last.fm	KKBOX
existing sessions	209,313	10,783,556
new sessions	209,925	10,782,507
accounts	370	88,399
unique users	922	343,723
items	314,763	564,164

Last.fm						
artists	60,410					
ККВОХ						
artists	43,157					
albums	253,896					
published years	77					
genres	48					

Introduction	Session-based Heterogeneous graph Embedding for User Identification (SHE-UI)	Experiments
		00000

Conclusions

Baseline Methods of User Identification

Item-based Clustering (Items as features)

- K-Means++ (KM)
- Subspace Clustering (SS)
- Affinity Propagation (AP)

Embedding-based Clustering (Embedding as features)

- word2vec (W2V)
- LINE
- DeepWalk (DW)

Experiments Conclusions

User Identification Performance

Dataset	Synthetic Last.fm Real Data from KKBOX											
Dataset		UI-Past			UI-New			UI-Past			UI-New	
Metric	NMI	MAF	MIF	NMI	MAF	MIF	NMI	MAF	MIF	NMI	MAF	MIF
Known Numbers of Users												
KM	0.2956	0.6109	0.7400	0.2802	0.6106	0.7400	0.3640	0.5710	0.6516	0.3286	0.5644	0.6592
SS	0.2954	0.6109	0.7405	0.2793	0.6105	0.7403	0.3627	0.5707	0.6612	0.3258	0.5642	0.6585
W2V	0.4865	0.7022	0.7982	0.4428	0.6823	0.7769	0.3828	0.5855	0.6524	0.3571	0.5739	0.6488
LINE	0.2667	0.5611	0.6544	0.2622	0.5724	0.6768	0.3830	0.5874	0.6463	0.3456	0.5634	0.6183
DW	0.5597	0.7372	0.8162	0.5148	0.7161	0.7947	0.3995	0.5976	0.6656	0.3587	0.5775	0.6419
SHE-UI	0.6108	0.7613	0.8393	0.5718	0.7455	0.8236	0.4281	0.6111	0.6804	0.3880	0.5948	0.6625
					Unknown	Numbers	of Users					
AP	0.1677	0.3413	0.3474	0.1546	0.4825	0.5408	0.1884	0.4828	0.4978	0.1783	0.5225	0.5569
KM	0.1189	0.5842	0.7003	0.1061	0.5622	0.6697	0.1856	0.5264	0.5849	0.1516	0.5041	0.5642
SS	0.1518	0.5838	0.6856	0.1312	0.5616	0.6582	0.1927	0.5312	0.5904	0.1841	0.5151	0.5851
W2V	0.2981	0.6413	0.6587	0.2560	0.6148	0.6347	0.2081	0.5337	0.6025	0.1807	0.5149	0.5818
LINE	0.0813	0.5641	0.6687	0.0964	0.5546	0.6552	0.1955	0.5365	0.6083	0.1010	0.4782	0.5394
DW	0.3053	0.6286	0.6557	0.2669	0.5966	0.6244	0.2158	0.5508	0.6249	0.1941	0.5322	0.6024
SHE-UI	0.3375	0.6563	0.6782	0.3214	0.6323	0.6568	0.2426	0.5610	0.6309	0.2218	0.5451	0.6117

Image: A match a ma

-

Application: User-level Recommendation

- Traditional systems can only provide account-level recommendation
 - Represented as $Z_A(a, i)$ for the account *a* and the item *i*
- With user identification, user-level recommendation is available.
 - Separately trained for each individual user
 - Denoted as $Z_U(a, i)$
- Two models can further be combined for better performance.

$$Z_C(a, u, i) = (1 - \alpha) \cdot \overline{Z_A}(a, i) + \alpha \cdot \overline{Z_U}(u, i),$$

• α is the parameter to control the weights of two systems.

Application: User-level Recommendation

- Traditional systems can only provide account-level recommendation
 - Represented as $Z_A(a, i)$ for the account a and the item i
- With user identification, user-level recommendation is available.
 - Separately trained for each individual user
 - Denoted as $Z_U(a, i)$
- Two models can further be combined for better performance.

$$Z_C(a, u, i) = (1 - \alpha) \cdot \overline{Z_A}(a, i) + \alpha \cdot \overline{Z_U}(u, i),$$

• α is the parameter to control the weights of two systems.

Application: User-level Recommendation

- Traditional systems can only provide account-level recommendation
 - Represented as $Z_A(a, i)$ for the account a and the item i
- With user identification, user-level recommendation is available.
 - Separately trained for each individual user
 - Denoted as $Z_U(a, i)$

• Two models can further be combined for better performance.

 $Z_C(a, u, i) = (1 - \alpha) \cdot \overline{Z_A}(a, i) + \alpha \cdot \overline{Z_U}(u, i),$

• α is the parameter to control the weights of two systems.

Application: User-level Recommendation

- Traditional systems can only provide account-level recommendation
 - Represented as $Z_A(a, i)$ for the account a and the item i
- With user identification, user-level recommendation is available.
 - · Separately trained for each individual user
 - Denoted as $Z_U(a, i)$
- Two models can further be combined for better performance.

$$Z_{C}(a, u, i) = (1 - \alpha) \cdot \overline{Z_{A}}(a, i) + \alpha \cdot \overline{Z_{U}}(u, i),$$

• α is the parameter to control the weights of two systems.

User-level Recommendation

Baseline Methods

- Most Popular Recommendation (PopRec)
- Maximum Margin Matrix Factorization (MMMF)
- Bayesian Personalized Ranking Matrix Factorization (BPRMF)
- Collaborative Less-is-More Filtering (CLiMF)

Evaluation Method

- Rank all items and consider occurred items as relevant instances for each testing session.
- Sparse and pretty difficult

Introduction Session-based Heterogeneous graph Embedding for User Identification (SHE-UI) Exp 0000 000000 000

Experiments Conclusions

Performance of User-level Recommendation

Our approach is combined with BPRMF.

	PopRec	MMMF	BPRMF	CLiMF	Ours ($\alpha = 0.6$)
MRR	0.1242	0.1421	0.1353	0.1400	0.1727 (+23.30%)
MAP	0.0317	0.0331	0.0330	0.0337	0.0439 (+30.03%)
P@1	0.0597	0.0608	0.0577	0.0597	0.0846 (+41.88%)

- Focused on a novel task of user identification behind shared accounts
- Proposed an approach based on heterogeneous graph embedding
- Proposed to improve recommenders using user identification
- Extensive experiments on both synthetic and real-world datasets
- Outperformed several competitive baselines
- See our paper for more detailed parameter sensitivity experiments

• Focused on a novel task of user identification behind shared accounts

- Proposed an approach based on heterogeneous graph embedding
- Proposed to improve recommenders using user identification
- Extensive experiments on both synthetic and real-world datasets
- Outperformed several competitive baselines
- See our paper for more detailed parameter sensitivity experiments

- Focused on a novel task of user identification behind shared accounts
- Proposed an approach based on heterogeneous graph embedding
- Proposed to improve recommenders using user identification
- Extensive experiments on both synthetic and real-world datasets
- Outperformed several competitive baselines
- See our paper for more detailed parameter sensitivity experiments

- Focused on a novel task of user identification behind shared accounts
- Proposed an approach based on heterogeneous graph embedding
- Proposed to improve recommenders using user identification
- Extensive experiments on both synthetic and real-world datasets
- Outperformed several competitive baselines
- See our paper for more detailed parameter sensitivity experiments

- Focused on a novel task of user identification behind shared accounts
- Proposed an approach based on heterogeneous graph embedding
- Proposed to improve recommenders using user identification
- Extensive experiments on both synthetic and real-world datasets
- Outperformed several competitive baselines
- See our paper for more detailed parameter sensitivity experiments

- Focused on a novel task of user identification behind shared accounts
- Proposed an approach based on heterogeneous graph embedding
- Proposed to improve recommenders using user identification
- Extensive experiments on both synthetic and real-world datasets
- Outperformed several competitive baselines
- See our paper for more detailed parameter sensitivity experiments

- Focused on a novel task of user identification behind shared accounts
- Proposed an approach based on heterogeneous graph embedding
- Proposed to improve recommenders using user identification
- Extensive experiments on both synthetic and real-world datasets
- Outperformed several competitive baselines
- See our paper for more detailed parameter sensitivity experiments

- Focused on a novel task of user identification behind shared accounts
- Proposed an approach based on heterogeneous graph embedding
- Proposed to improve recommenders using user identification
- Extensive experiments on both synthetic and real-world datasets
- Outperformed several competitive baselines
- See our paper for more detailed parameter sensitivity experiments