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Online Streaming Services

Online streaming services are popular nowadays.
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However, they might not be free.

Membership is usually not free.

Spotify charges $9.99 per month
Netflix charges $7.99 per month
Hulu charges $7.99 per month
Amazon charges $99 per year
· · ·

Tendency to save money by sharing accounts

Some users may choose to share one account!
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Account sharing can be a serious issue!

Lost Revenue

When n users share an
account, n − 1 fees are lost.

Policy violation

Personalized Recommenders

Transactions of an account are a
mixture of multi-user activities.

Unsatisfactory recommendations

Identifying users behind shared accounts is important!
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Motivation: Meta information of items tells stories

“Bad Romance” “Born This Way”

“Poker Face”

“Halo”

“Crazy in Love” “Hotel California”

“New Kid in Town”“Blackbird”

“Already Gone” “Revolution”

In this work, we exploit meta information of items to identify users.
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Problem Definition

Given an account and its existing sessions, there are two goals.

Goal 1: User Identification as Session Clustering (UI-Past)

Group the given sessions into clusters

so that each cluster represents a user.
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Problem Definition

Given an account and its existing sessions, there are two goals.

Goal 2: Identifying Users for New Sessions (UI-New)

Identify the user using only a few preceding items of a new session

so that the we can identify the user as early as possible.

? ?

New Incoming Session

User 1 User 2
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Framework Overview of SHE-UI

Session-based Heterogeneous graph Embedding for User Identification(SHE-UI)

1. Heterogeneous
Graph Construction

Meta

Item ⋯

⋯

2. Graph and Session
Embedding

3. User Identification
by Clustering

⋯
⋯

⋯
⋯

⋯
⋯

For UI-Past (existing sessions)

Treat each cluster as a user

For UI-New (new sessions)

Find the closest cluster
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Heterogeneous Graph Construction

Items and their meta information can be represented by nodes.

Relationships among items and meta are represented by edges.

“Bad Romance” “Born This Way”

“Poker Face”

“Halo”

“Crazy in Love”

Lady Gaga BeyoncéAlbum “The 
Fame Monster”
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Graph and Session Embedding

Random walks are commonly utilized for node embedding.

However, their popularity has a large variance.

i.e., some items will be over-optimized.
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Normalized Random Walk for Node Embedding

Normalize probabilities with node degrees

𝑝

	𝑞$	𝑞%

	𝑞& 	𝑞'

𝑃 𝑤* = 𝑞% 𝑤*,' = 𝑝

Skip-gram architectures such as DeepWalk can then be applied to learn
node embeddings.
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Item-based Session Embedding

Session embedding can be computed by aggregating item embeddings.

But repeated items in a session may cause issues.

100 play counts v.s. 20 play counts, 1 play count v.s. 2 play counts

Occurrence-Preference Assumption (Gopalan et al., NIPS’14)

The item occurrences is proportional to the square of the preference score.

The features of the session s can be computed as:

f (s) =
1∑

i∈U(s)

√
C (s, i)

∑
i∈U(s)

√
C (s, i) · f (i).

We then cluster the sessions in the item-based session embedding space.
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Experimental Settings

Two datasets

Real-world KKBOX dataset
Synthetic Last.fm dataset

Segment logs into sessions with a 30-minute threshold

Remove inactive accounts and short sessions

(a) Session Information

Last.fm KKBOX
existing

209,313 10,783,556
sessions

new sessions 209,925 10,782,507

accounts 370 88,399

unique users 922 343,723

items 314,763 564,164

(b) metadata

Last.fm
artists 60,410

KKBOX
artists 43,157
albums 253,896
published years 77
genres 48
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Baseline Methods of User Identification

Item-based Clustering (Items as features)

K-Means++ (KM)

Subspace Clustering (SS)

Affinity Propagation (AP)

Embedding-based Clustering (Embedding as features)

word2vec (W2V)

LINE

DeepWalk (DW)
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User Identification Performance

Dataset
Synthetic Last.fm Real Data from KKBOX

UI-Past UI-New UI-Past UI-New

Metric NMI MAF MIF NMI MAF MIF NMI MAF MIF NMI MAF MIF

Known Numbers of Users

KM 0.2956 0.6109 0.7400 0.2802 0.6106 0.7400 0.3640 0.5710 0.6516 0.3286 0.5644 0.6592
SS 0.2954 0.6109 0.7405 0.2793 0.6105 0.7403 0.3627 0.5707 0.6612 0.3258 0.5642 0.6585

W2V 0.4865 0.7022 0.7982 0.4428 0.6823 0.7769 0.3828 0.5855 0.6524 0.3571 0.5739 0.6488
LINE 0.2667 0.5611 0.6544 0.2622 0.5724 0.6768 0.3830 0.5874 0.6463 0.3456 0.5634 0.6183
DW 0.5597 0.7372 0.8162 0.5148 0.7161 0.7947 0.3995 0.5976 0.6656 0.3587 0.5775 0.6419

SHE-UI 0.6108 0.7613 0.8393 0.5718 0.7455 0.8236 0.4281 0.6111 0.6804 0.3880 0.5948 0.6625

Unknown Numbers of Users

AP 0.1677 0.3413 0.3474 0.1546 0.4825 0.5408 0.1884 0.4828 0.4978 0.1783 0.5225 0.5569
KM 0.1189 0.5842 0.7003 0.1061 0.5622 0.6697 0.1856 0.5264 0.5849 0.1516 0.5041 0.5642
SS 0.1518 0.5838 0.6856 0.1312 0.5616 0.6582 0.1927 0.5312 0.5904 0.1841 0.5151 0.5851

W2V 0.2981 0.6413 0.6587 0.2560 0.6148 0.6347 0.2081 0.5337 0.6025 0.1807 0.5149 0.5818
LINE 0.0813 0.5641 0.6687 0.0964 0.5546 0.6552 0.1955 0.5365 0.6083 0.1010 0.4782 0.5394
DW 0.3053 0.6286 0.6557 0.2669 0.5966 0.6244 0.2158 0.5508 0.6249 0.1941 0.5322 0.6024

SHE-UI 0.3375 0.6563 0.6782 0.3214 0.6323 0.6568 0.2426 0.5610 0.6309 0.2218 0.5451 0.6117
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Application: User-level Recommendation

Traditional systems can only provide account-level recommendation

Represented as ZA(a, i) for the account a and the item i

With user identification, user-level recommendation is available.

Separately trained for each individual user
Denoted as ZU(a, i)

Two models can further be combined for better performance.

ZC (a, u, i) = (1 − α) · ZA(a, i) + α · ZU(u, i),

α is the parameter to control the weights of two systems.
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User-level Recommendation

Baseline Methods

Most Popular Recommendation (PopRec)

Maximum Margin Matrix Factorization (MMMF)

Bayesian Personalized Ranking Matrix Factorization (BPRMF)

Collaborative Less-is-More Filtering (CLiMF)

Evaluation Method

Rank all items and consider occurred items as relevant instances for
each testing session.

Sparse and pretty difficult
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Performance of User-level Recommendation

Our approach is combined with BPRMF.

PopRec MMMF BPRMF CLiMF Ours (α = 0.6)

MRR 0.1242 0.1421 0.1353 0.1400 0.1727 (+23.30%)

MAP 0.0317 0.0331 0.0330 0.0337 0.0439 (+30.03%)

P@1 0.0597 0.0608 0.0577 0.0597 0.0846 (+41.88%)
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Conclusions

Focused on a novel task of user identification behind shared accounts

Proposed an approach based on heterogeneous graph embedding

Proposed to improve recommenders using user identification

Extensive experiments on both synthetic and real-world datasets

Outperformed several competitive baselines

See our paper for more detailed parameter sensitivity experiments

Thanks for your attention! Questions?
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