Introduction	CANTOR: The Proposed Method	Experiments	Conclusions

Clustering and Constructing User Coresets to Accelerate Large-scale Top-*K* Recommender Systems

Jyun-Yu Jiang*, Patrick H. Chen*, Cho-Jui Hsieh and Wei Wang (*Equal Contribution)

University of California, Los Angeles (UCLA)

April 22, 2020

J.-Y. Jiang et al. (UCLA) Clustering and Constructing User Coresets to Accelerate Large-scale Top-K RecSys April 22, 2020 0 / 18

0000	CANTOR: The Proposed Method	00000	0
Outling			

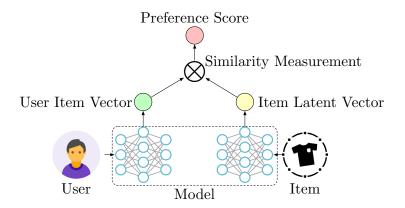
นเททธ

2 CANTOR: Clustering And Navigating for TOp-K Recommenders

J.-Y. Jiang et al. (UCLA) Clustering and Constructing User Coresets to Accelerate Large-scale Top-K RecSys April 22, 2020 1 / 18

-∢ ∃ ▶

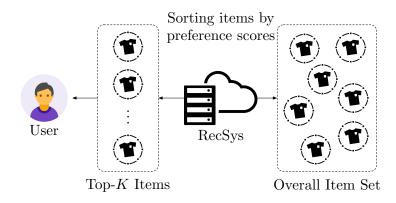
J.-Y. Jiang et al. (UCLA) Clustering and Constructing User Coresets to Accelerate Large-scale Top-K RecSys April 22, 2020 2 / 18



J.-Y. Jiang et al. (UCLA) Clustering and Constructing User Coresets to Accelerate Large-scale Top-K RecSys April 22, 2020 3 / 18

Introduction	CANTOR: The Proposed Method	Experiments	Conclusions
00●0		00000	O
Top-K Rec	commender Systems		

For each user, the systems provide K items with highest preference scores.



J.-Y. Jiang et al. (UCLA) Clustering and Constructing User Coresets to Accelerate Large-scale Top-K RecSys April 22, 2020 4 / 18

Introduction 000● CANTOR: The Proposed Method

Experiments 00000

∃ ► < ∃ ►

Training Stage v.s. Prediction Stage

Training Stage	Prediction Stage
• Training data are limited.	• User-item pairs are exhaustive.
• Negative examples are sampled.	• All items should be considered.
• Fast speed.	• Slow speed.
• Customers don't care.	• Customers care.
• Could be minutes.	• Could be days.

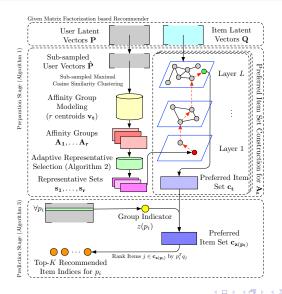
Can we accelerate the prediction stage?

J.-Y. Jiang et al. (UCLA) Clustering and Constructing User Coresets to Accelerate Large-scale Top-K RecSys April 22, 2020 5 / 18

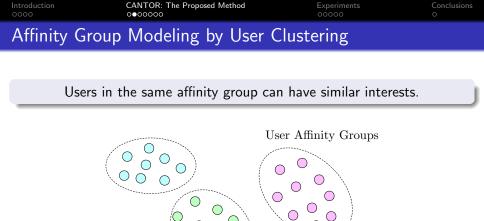
CANTOR: The Proposed Method •000000 Experiments 00000

э.

Framework Overview



J.-Y. Jiang et al. (UCLA) Clustering and Constructing User Coresets to Accelerate Large-scale Top-K RecSys April 22, 2020 6 / 18



However, interests can be still diverse while a group can have many users.

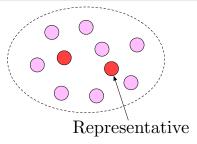
User Latent Vector

 Introduction
 CANTOR: The Proposed Method
 Experiments
 Conclusions

 0000
 00000
 00000
 00000
 0

Coreset Vectors as Representations

A coreset of user vectors may cover the interests of same-group users.



$\delta\text{-user}$ Coreset

$$\left|p_{i}q^{T}-\mathcal{N}_{\boldsymbol{s}_{t}}\left(p_{i}\right)q^{T}\right|\leq\delta,$$

where $\mathcal{N}_{s_t}(p_i) \in s_t$ is the nearest coreset representative for p_i ; $\delta > 0$ is a small enough constant

J.-Y. Jiang et al. (UCLA) Clustering and Constructing User Coresets to Accelerate Large-scale Top-K RecSys April 22, 2020 8 / 18

CANTOR: The Proposed Method

Experiments 00000 Conclusions 0

Adaptive Representative Selection

Algorithm 2: Adaptive Representative Selection Input: User latent vectors for an affinity group P, the number of iterations T, the threshold ϵ , the number of new representatives w; Output: Representative vectors s. 1 Initialize $s = \emptyset$; 2 I = arg max, $s^T P$; 3 repeat for i = 1 ... |s| do $s_i = \sum_{j \in \{j | I[j] = i\}} P[j];$ 5 $s_i = s_i / ||s_i||_2$; 6 $I = \arg \max_{t} s^{T} P$; Outliers = $\{j | \mathbf{s}_{I[i]}^T \mathbf{P}_j < \epsilon\}$; 8 for $j \in Outliers$ do 9 Draw i from $1 \dots w$; 10 I[j] = |s| + i;11 if Outliers ≠ Ø then 12 Append w vectors to s; 13 14 until Outliers = 0: 15 Outliers = $\{j | \mathbf{s}_{I[i]}^T \mathbf{P}_j < \epsilon\}$; 16 Append Poutliers to s; 17 return s.

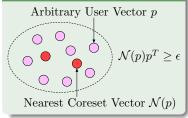
J.-Y. Jiang et al. (UCLA) Clustering and Constructing User Coresets to Accelerate Large-scale Top-K RecSys April 22, 2020 9 / 18

CANTOR: The Proposed Method

Experiments 00000

Coreset Construction as Finding a Set Cover

$\epsilon\text{-}\mathsf{Set}$ Cover



Theorem 1

Given an ϵ -cover s_t , there exists a δ such that ϵ -cover s_t is a δ -user coreset of the affinity group.

Theorem 2

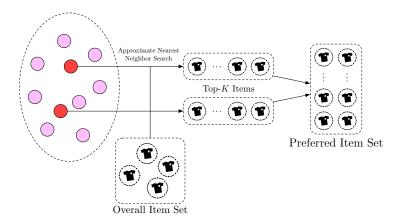
For an affinity group A_t , given any item vector q, an ϵ -cover of k samples $\{p_i\}$ drawn from P_{A_t} would satisfy following inequality with probability at least $1 - \gamma$:

$$\min_{i}\left(\left|\mathcal{N}\left(p_{i}\right)q^{T}-p_{t}q^{T}\right|\right)\leq\delta+\sqrt{\frac{2\log\left(1/\gamma\right)}{k}}.$$

CANTOR: The Proposed Method

Experiments 00000 Conclusions 0

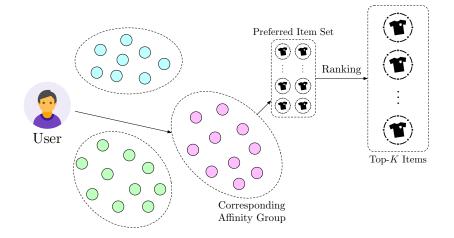
Preferred Item Set Construction



Any approximate nearest neighbor search method is applicable.

▶ < Ξ >

Introduction	CANTOR: The Proposed Method	Experiments	Conclusions
	000000		
Prediction St	tage		



(4) E (4) (2) (4)

Introduction	

Experiments ●0000

Experimental Datasets

Task	ltem	Recommend	ation
Dataset	MovieLens	Last.fm	Amazon
#(Users)	138,493	359,293	2,146,057
#(ltems)	26,744	160,153	1,230,915
Task	Personal	ized Link Pr	ediction
Dataset	YouTube	Flickr	Wikipedia
#(Users)	1,503,841	1,580,291	1,682,759
#(ltems)	1,503,841	1,580,291	1,682,759

イロト イポト イヨト イヨト

Experimenta	l Settings		
Introduction	CANTOR: The Proposed Method	Experiments	Conclusions
0000		0●000	0

- We train a non-negative matrix factorization model as ground truths.
- Experimental methods aims at providing top-K items for all users.
- Evaluated with
 - Speedup rate (SU) compared to the $O(musers \times nitems)$ approach
 - $\bullet\,$ Split of preparation time (PT) and inference time (IT)
 - Precision at 1 (P@1) and 5 (P@5)
- See more details in our paper.

CANTOR: The Proposed Method

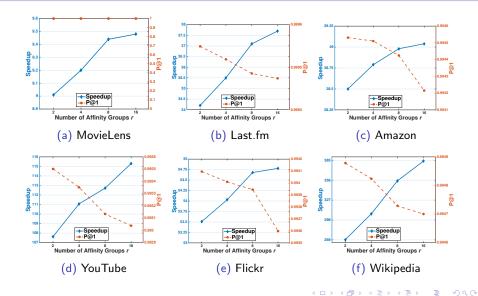
Experiments 00000

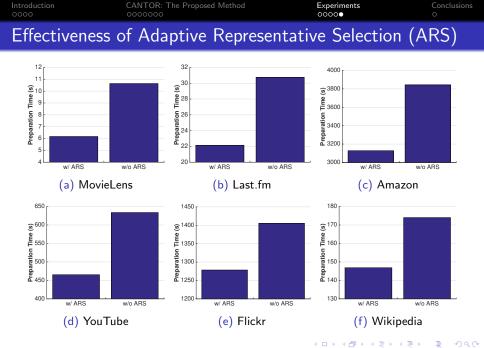
Top-K Recommendation Results

Task		Item Recommendation													
Dataset	MovieLens Last.fm						Amazon								
Method	SU	PT	IT	P@1	P@5	SU	PT	IT	P@1	P@5	SU	PT	IT	P@1	P@5
<i>ϵ</i> -Approx	0.7x	0.19s	99.00s	0.753	0.671	0.5x	1.40s	36.78m	0.378	0.467	0.2x	23.42s	107.34h	0.529	0.559
GMIPS	3.9x	N/A	18.41s	1.000	0.972	2.3x	N/A	7.55m	0.997	0.966	1.8×	N/A	14.57h	0.993	0.952
SVDS	1.0×	0.10s	69.00s	1.000	1.000	0.9x	0.10s	19.25m	0.984	0.984	1.3×	5.32s	19.46h	0.952	0.953
FGD	2.8x	4.94s	20.10s	1.000	0.999	10.9x	0.49m	1.07m	0.997	0.988	19.7×	42.76m	35.83m	0.986	0.977
L2S	3.0x	22.15s	1.72s	1.000	1.000	9.0x	1.77m	0.12m	0.993	0.980	21.2x	71.02m	1.86m	0.988	0.979
CANTOR	9.4x	6.17s	1.36s	1.000	0.999	37.1x	0.37m	0.09m	0.999	0.998	29.0x	52.13m	1.26m	0.994	0.991
Task							Personalize	d Link Pre	diction						
Dataset		Yo	ouTube					Flickr	ckr Wikipedia						
Method	SU	PT	IT	P@1	P@5	SU	PT	IT	P@1	P@5	SU	PT	IT	P@1	P@5
<i>ϵ</i> -Approx	0.1x	0.3m	129.2h	0.364	0.432	0.4x	0.29m	53.44h	0.545	0.581	0.2x	0.39m	130.61h	0.374	0.480
GMIPS	1.4x	N/A	11.12h	0.987	0.965	2.0x	N/A	10.10h	0.987	0.962	3.6x	N/A	5.64h	0.991	0.974
SVDS	1.0x	0.03m	15.30h	0.965	0.963	1.4x	0.03m	14.00h	0.952	0.946	1.4x	0.03m	14.83h	0.949	0.944
FGD	44.8x	10.28m	10.85m	0.989	0.981	37.5x	17.61m	14.25m	0.985	0.980	93.7x	4.18m	8.76m	0.990	0.985
L2S	6.9x	135.93m	0.79m	0.984	0.968	8.3x	142.84m	0.58m	0.989	0.980	22.4x	53.38m	0.84m	0.988	0.968
CANTOR	112.7x	7.75m	0.65m	0.993	0.985	54.7x	21.31m	0.53m	0.994	0.990	355.1x	2.45m	0.97m	0.995	0.991

< 日 > < 同 > < 回 > < 回 > < 回 >

Number of Affinity Groups





Introduction	CANTOR: The Proposed Method	Experiments	Conclusions
0000		00000	•
Conclusions			

- We propose a novel approach to accelerate inference of top-K recsys.
- User affinity groups and representatives save lots of computations.
- Representative coresets as a set cover are theoritically guaranteed.
- Significant improvements on extensive experiments with 6 datasets.
- Analysis shows the effectiveness and robustness of our approach.

Questions? Or ask me by email: jyunyu@cs.ucla.edu