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Recommender systems are ubiquitous in our lives.

RecSys can suggest users preferred items that can be anything!

You may like ...

J.-Y. Jiang et al. (UCLA) Clustering and Constructing User Coresets to Accelerate Large-scale Top-K RecSys April 22, 2020 2 / 18



Introduction CANTOR: The Proposed Method Experiments Conclusions

Conventional Approaches for Recommender Systems

User Item

O

Model

Preference Score

Similarity Measurement

Item Latent VectorUser Item Vector
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Top-K Recommender Systems

For each user, the systems provide K items with highest preference scores.

User

...

Top-K Items Overall Item Set

Sorting items by
preference scores

RecSys
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Training Stage v.s. Prediction Stage

Training Stage

Training data are limited.

Negative examples are sampled.

Fast speed.

Customers don’t care.

Could be minutes.

Prediction Stage

User-item pairs are exhaustive.

All items should be considered.

Slow speed.

Customers care.

Could be days.

Can we accelerate the prediction stage?
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Framework Overview
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Affinity Group Modeling by User Clustering

Users in the same affinity group can have similar interests.

User Latent Vector

User A�nity Groups

However, interests can be still diverse while a group can have many users.
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Coreset Vectors as Representations

A coreset of user vectors may cover the interests of same-group users.

Representative

δ-user Coreset
∣∣∣piqT −Nst (pi ) q

T
∣∣∣ ≤ δ,

where Nst (pi ) ∈ st is the nearest coreset representative for pi ; δ > 0 is a
small enough constant
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Adaptive Representative Selection
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Coreset Construction as Finding a Set Cover

ε-Set Cover

Nearest Coreset Vector N (p)

Arbitrary User Vector p

N (p)pT � ✏

Theorem 1
Given an ε-cover st , there exists a δ such that
ε-cover st is a δ-user coreset of the affinity group.

Theorem 2
For an affinity group At , given any item vector q,
an ε-cover of k samples {pi} drawn from PAt

would satisfy following inequality with probability
at least 1− γ:

min
i

(∣∣∣N (pi ) q
T − ptq

T
∣∣∣) ≤ δ +

√
2 log (1/γ)

k
.
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Preferred Item Set Construction

Overall Item Set

...

Top-K Items

...

Approximate Nearest
Neighbor Search

..

.
..
.

Preferred Item Set

Any approximate nearest neighbor search method is applicable.
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Prediction Stage
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Experimental Datasets

Task Item Recommendation
Dataset MovieLens Last.fm Amazon

#(Users) 138,493 359,293 2,146,057
#(Items) 26,744 160,153 1,230,915

Task Personalized Link Prediction
Dataset YouTube Flickr Wikipedia

#(Users) 1,503,841 1,580,291 1,682,759
#(Items) 1,503,841 1,580,291 1,682,759
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Experimental Settings

We train a non-negative matrix factorization model as ground truths.

Experimental methods aims at providing top-K items for all users.

Evaluated with

Speedup rate (SU) compared to the O(musers× nitems) approach
Split of preparation time (PT) and inference time (IT)
Precision at 1 (P@1) and 5 (P@5)

See more details in our paper.
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Top-K Recommendation Results

Task Item Recommendation

Dataset MovieLens Last.fm Amazon

Method SU PT IT P@1 P@5 SU PT IT P@1 P@5 SU PT IT P@1 P@5

ε-Approx 0.7x 0.19s 99.00s 0.753 0.671 0.5x 1.40s 36.78m 0.378 0.467 0.2x 23.42s 107.34h 0.529 0.559
GMIPS 3.9x N/A 18.41s 1.000 0.972 2.3x N/A 7.55m 0.997 0.966 1.8x N/A 14.57h 0.993 0.952
SVDS 1.0x 0.10s 69.00s 1.000 1.000 0.9x 0.10s 19.25m 0.984 0.984 1.3x 5.32s 19.46h 0.952 0.953
FGD 2.8x 4.94s 20.10s 1.000 0.999 10.9x 0.49m 1.07m 0.997 0.988 19.7x 42.76m 35.83m 0.986 0.977
L2S 3.0x 22.15s 1.72s 1.000 1.000 9.0x 1.77m 0.12m 0.993 0.980 21.2x 71.02m 1.86m 0.988 0.979

CANTOR 9.4x 6.17s 1.36s 1.000 0.999 37.1x 0.37m 0.09m 0.999 0.998 29.0x 52.13m 1.26m 0.994 0.991

Task Personalized Link Prediction

Dataset YouTube Flickr Wikipedia

Method SU PT IT P@1 P@5 SU PT IT P@1 P@5 SU PT IT P@1 P@5

ε-Approx 0.1x 0.3m 129.2h 0.364 0.432 0.4x 0.29m 53.44h 0.545 0.581 0.2x 0.39m 130.61h 0.374 0.480
GMIPS 1.4x N/A 11.12h 0.987 0.965 2.0x N/A 10.10h 0.987 0.962 3.6x N/A 5.64h 0.991 0.974
SVDS 1.0x 0.03m 15.30h 0.965 0.963 1.4x 0.03m 14.00h 0.952 0.946 1.4x 0.03m 14.83h 0.949 0.944
FGD 44.8x 10.28m 10.85m 0.989 0.981 37.5x 17.61m 14.25m 0.985 0.980 93.7x 4.18m 8.76m 0.990 0.985
L2S 6.9x 135.93m 0.79m 0.984 0.968 8.3x 142.84m 0.58m 0.989 0.980 22.4x 53.38m 0.84m 0.988 0.968

CANTOR 112.7x 7.75m 0.65m 0.993 0.985 54.7x 21.31m 0.53m 0.994 0.990 355.1x 2.45m 0.97m 0.995 0.991
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(a) MovieLens
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Effectiveness of Adaptive Representative Selection (ARS)
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Conclusions

We propose a novel approach to accelerate inference of top-K recsys.

User affinity groups and representatives save lots of computations.

Representative coresets as a set cover are theoritically guaranteed.

Significant improvements on extensive experiments with 6 datasets.

Analysis shows the effectiveness and robustness of our approach.

Questions? Or ask me by email: jyunyu@cs.ucla.edu
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