Introduction EDAM: The Proposed Method Experiments Conclusions 0000 0000 0

End-to-End Deep Attentive Personalized Item Retrieval for Online Content-sharing Platforms

Jyun-Yu Jiang, Tao Wu, Georgios Roumpos, Heng-Tze Cheng, Xinyang Yi, Ed Chi, Harish Ganapathy, Nitin Jindal, Pei Cao and Wei Wang (Work done while interning at Google)

> University of California, Los Angeles (UCLA) Google Inc.

> > April 23, 2020

Introduction	EDAM: The Proposed Method	Experiments	Conclusions
00000		00000	O
Outline			

2 EDAM:

End-to-end Deep Attentive Model for Personalized Item Retreival

3 Experiments

Introduction	EDAM: The Proposed Method	Experiments	Conclusions
00000			

Online content-sharing platforms are popular in nowadays.

< ∃ ►

Introduction 00000 EDAM: The Proposed Method

Experiments 00000

3 / 16

Search is one of the most essential functions for platforms

An example of YouTube search.

- Billions of videos on YouTube.
- Millions of musics on Spotify.
- Billions of photos on Instagram.
- ... and more.

Introduction 00000	EDAM: The Proposed Method	Experir 00000

Item Retrieval is Hard.

Can we conduct item retrieval without using noisy descriptive information?

J.-Y. Jiang et al. (UCLA & Google) End-to-End Deep Attentive

End-to-End Deep Attentive Personalized Item Retrieval

April 23, 2019 4 / 16

< □ > < □ > < □ > < □ > < □ > < □ >

Line and have	different interests from a		
00000	0000	00000	0
Introduction	EDAM: The Proposed Method	Experiments	Conclusions

Users can have different intents for a query.

Personalization is important for the retrieval performance.

• • = • •

-

Introduction 0000● EDAM: The Proposed Method

Experiments 00000

• = • •

Comparisons between Different Retrieval Tasks

Personalized Task	Descriptive Information	Meta Information
Ad-hoc Search	✓ (documents)	X
Web Search	✓ (web pages)	×
Microblog Search	✓ (tweets)	🗸 (hashtags)
Product Search	✓ (product reviews)	✓ (categories)
Item Search	X	✓ (content providers)

Introduction	EDAM: The Proposed Method	Experiments	Conclusions
	0000		
0 D			

∃ →

IntroductionEDAM: The Proposed MethodExperimentsConclusions000000000000000

Query-aware Attention with External Key Memory

Query embedding space can be much different from the item one.

• Given a query q, the attention weight of a historical item v can be:

$$\alpha_{k}(\boldsymbol{v},\boldsymbol{q}) = \frac{\exp\left(\boldsymbol{q}^{T}\boldsymbol{k}_{\boldsymbol{v}}/\sqrt{d}\right)}{\sum_{\boldsymbol{v}'\in\boldsymbol{H}^{V}(\boldsymbol{u})}\exp\left(\boldsymbol{q}^{T}\boldsymbol{k}_{\boldsymbol{v}'}/\sqrt{d}\right)}.$$

- k_{ν} is the external key embedding.
- The historical item representation h_V can be re-written as

$$\boldsymbol{h}_{\boldsymbol{V}} = \sum_{\boldsymbol{v}\in H^{V}(\boldsymbol{u})} \alpha_{k}(\boldsymbol{v},\boldsymbol{q})\cdot\boldsymbol{v}.$$

Ultimate Features

Representations of historical items, providers, and the query.

J.-Y. Jiang et al. (UCLA & Google) End-to-End Deep Attentive Personalized Item Retrieval Ap

April 23, 2019 8 / 16

Introduction EDAM: The Proposed Method Experiments Conclusions

Classification as Ranking and Auxiliary Ranker

• Item key embeddings can be considered as ranking weights for regularization.

∃ >

Introduction	EDAM: The Proposed Method	Experiments	Conclusions
00000	000●	00000	O
Locality Prese	ervation		

Context information in sessions can be leveraged.

Introduction	EDAM: The Proposed Method	Experiments	Conclusions
00000		●0000	0
Experimental [Datasets and Protocol		

- User logs from a large video platform at Google
 - Videos as items and channels as content providers.
 - 400 most recent accessed items for 184M users.
- 90% of users are randomly sampled as training users.
 - $\bullet\,$ The remaining 10% of users are considered testing users for evaluation.
- Evaluate the performance with Success Rate at K (SR@K)

Introduction 00000 EDAM: The Proposed Method

Experiments 00000 Conclusions 0

Experimental results

 Introduction
 EDAM: The Proposed Method
 Experiments
 Conclusions

 00000
 0000
 0000
 0

Performance with different lengths of historical items

J.-Y. Jiang et al. (UCLA & Google) End-to-End Deep Attentive Personalized Item Retrieval April 23, 2019 13 / 16

 Introduction
 EDAM: The Proposed Method
 Experiments

 00000
 0000
 000●0

Conclusions 0

Ablation Study on Model Components

Mathad		Length of User History				
Method	Overall	[0, 50]	[51, 100]	[101, 200]	[201, 400]	
EDAM	0.4097	0.3297	0.3718	0.3822	0.4196	
without Auxiliary Ranking	0.3973	0.3031	0.3522	0.3696	0.4089	
without Locaility Preservation	0.4039	0.3143	0.3591	0.3729	0.4155	

< 行

★ ∃ ► ★

Introduction 00000 EDAM: The Proposed Method

Experiments 0000●

• • • • • • • • • • • •

э

Conclusions 0

Performance on Key Embeddings

Method	Length of User History				
Method	Overall	[0, 50]	[51, 100]	[101, 200]	[201, 400]
ZAM	0.3957	0.3155	0.3570	0.3709	0.4056
EDAM (Item)	0.4097	0.3297	0.3718	0.3822	0.4196
EDAM (Provider)	0.3808	0.3106	0.3513	0.3608	0.3892

Introduction	EDAM: The Proposed Method	Experiments	Conclusions
00000		00000	•
Conclusions			

- We propose a novel approach of personalized item retrieval.
- Independent item key embeddings improve the attention quality.
- Auxiliary ranker further sharpens the item key embeddings.
- Locality preservation as regularization also benefit performance.
- Significant improvements on a large-scale commercial dataset.
- Analysis shows the effectiveness and robustness of our approach.

Questions? Or ask me by email: jyunyu@cs.ucla.edu Personal Site: https://jyunyu.csie.org/